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Abstract
The recent COVID-19 pandemic has affected health systems across the world. Especially,
IntensiveCareUnits (ICUs) have played a pivotal role in the treatment of critically-ill patients.
At the same time however, the increasing number of admissions due to the vast prevalence
of the virus have caused several problems for ICU wards such as overburdening of staff and
shortages of medical resources. These issues might have affected the quality of healthcare
services provided directly impacting a patient’s survival. The objective of this research is to
leverage Machine Learning (ML) on hospital data in order to support hospital managers and
practitioners with the treatment of COVID-19 patients. This is accomplished by providing
more detailed inference about a patient’s likelihood of ICU admission, mortality and in
case of hospitalization the length of stay (LOS). In this pursuit, the outcome variables are in
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three separate models predicted by five different ML algorithms: eXtreme Gradient Boosting
(XGB), K-Nearest Neighbor (KNN), Random Forest (RF), bagged-CART (b-CART), and
LogitBoost (LB). With the exception of KNN, the studied models show good predictive
capabilities when evaluating relevant accuracy scores, such as area under the curve. By
implementing an ensemble stacking approach (either aNeuralNet or aGeneral LinearModel)
on top of the aforementioned ML algorithms the performance is further boosted. Ultimately,
for the prediction of admission to the ICU, the ensemble stacking via a Neural Net achieved
the best result with an accuracy of over 95%. For mortality at the ICU, the vanilla XGB
performed slightly better (1%differencewith themeta-model). To predict large length of stays
both ensemble stacking approaches yield comparable results. Besides it direct implications
for managing COVID-19 patients, the approach presented serves as an example how data
can be employed in future pandemics or crises.

Keywords COVID-19 pandemic · ML in health systems · Supervised learning · Ensemble
modeling

1 Introduction

The Intensive Care Unit known as ICU is a critical department in a hospital with special
equipment and trained medical personnel for critically sick or injured individuals (Merriam-
Webster, 2022). This unit is responsible to provide emergency care for those who require
immediate treatment as to deal with life-threatening conditions. In times of crises like nat-
ural hazards and pandemics, which create an influx of patients, providing immediate health
services for cases with critical situations becomes of paramount importance (Bohmer et al.,
2020).

During the recent COVID-19 pandemic health system all over the world have been heavily
burdened by the sudden influx of patients. Countries have been faced by numerous challenges
while attempting to maintain the health system responsive and capable to provide essential
health services (WHO Headquarters (HQ). 2021). The increasing number of hospital admis-
sion due to the vast prevalence of this virus has caused several problems for ICU wards
such as overburdening of staff (Mehta et al., 2021) and shortages of medical resources, see
for example Cohen and Y. van der M. Rodgers (2020). A recent cohort study in the USA
revealed that strains on critical care capacity were associated with the increased number of
ICU mortality for COVID-19 patients (Bravata et al., 2021). Therefore, there is impetus to
reconsider and improve the management plan for the ICU.

A potentially beneficial source to assist healthcare providers is the vast amount of data
captured. However, these huge volumes of medical data such as patient’s characteristics,
medication administration records, and genomic sequences, make it bewildering and perhaps
impossible to make decisions as an individual. Fortunately, prediction models powered by
Machine Learning (ML) are capable to learn and provide tangible insights and it is no surprise
that it is reported that such models are becoming a necessity for the modern health systems
(Beam and Kohane, 2018). ML can be seen as a subset of Artificial Intelligence (AI) which
has the capability of emulating human intelligence (El Naqa and Murphy, 2015). The ML
algorithms are classified into six types (Oladipupo, 2010): supervised learning, unsupervised
learning, semi-supervised learning, reinforcement learning, transduction, and learning to
learn. Supervised learning, the most common type of ML, attempts to predict the outcome
for unseen data based on learning the mapping between the input variable and output variable
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by means of train data (Cunningham et al., 2008). A common task in supervised learning
is classification, in which the algorithm learns to classify an unknown object into one of a
set of pre-determined classes (Carrizosa and Romero Morales, 2013), which is commonly
employed in healthcare (Tomar and Agarwal, 2013). When the data is classified into two
classes the problem is called binary classification; if the task is to classify the dataset into
more than two classes the problem is referred to as multi-class classification.

In the light of the current COVID-19 pandemic, the integration ofML can be considered to
copewith various challenges related to themanagement of healthcare resources, consideration
of treatment plans, informing policies, and research challenges (Schaar et al., 2021). As
mentioned, managing scarce resources is a key challenge in times of a pandemic, for example
the distribution and production of face masks (Tirkolaee et al., 2022), but also efficient use
of the limited capacity of the ICU. Our research question is whether ML-prediction models
are capable to provide insights about the ICU. To do so we focus on a threefold of elements,
which directly affect the ICU capacity (required number of beds): the admission to the ICU,
the likelihood of an excessive length of stay (LOS), and the mortality.

In line with this research questions this study presents a comprehensive ML-based frame-
work to predict three target variables: ICU admission, ICU mortality, and ICU LOS of
hospitalizedCOVID-19 patients. For the predictionwell-establishedML algorithms are used.
Using the advanced idea of ensemble stacking, which, by means of a meta-model, combines
the separate ML approaches in a single model, one can benefit from the different predictive
capabilities of eachML algorithm. Also, the research uncovers the important features to these
three target variables, which from a medical point of view is of significant value. Finally,
we point out that the same as for example the contemporary works (Goli and Malmir 2020;
Alinaghian and Goli 2017) on disaster management this paper serves as an example how one
can leverage ML in the case of a crisis situation.

The rest of the paper is organized as follows. Section 2 presents research works in the
literature that relate to our study. In Sect. 3 the materials, including the dataset, and pre-
processing actions on data andML algorithms are described, which also provides the relevant
features on which theML algorithms will be trained. TheML prediction results are presented
in Sect. 4. Finally, we discuss the results and conclude in Sect. 5 and Sect. 6 respectively.

2 Related works

There is a wide field of literature on ML in healthcare. We summarize relevant literature
that focus on the ICU. For example there are various works on applying ML models on the
ICU admission and mortality for hospitalized COVID-19 patients, see for example Altini
et al. (2021), Campbell et al. (2021), Hou et al. (2021), Podder and Mondal (2020), Ryan
et al. (2020) and Vaid et al. (2020). In more detail, a study in Spain (Aznar-Gimeno et al.,
2021) in which the cohort information of 3623 patients is used to provide a decision-making
tool to assist clinicians to estimate the risk of ICU admission or mortality. Chieregato et al.
(2021) developed a hybrid machine learning/deep learning model to predict the need to ICU
among COVID-19 patients. They used the data of 558 patients admitted to a hospital in Italy.
In another study (Mahdavi et al., 2021), to predict the mortality prognosis which can help
in declining the mortality rates, by applying invasive and noninvasive biomarker three ML
models were presented. To predict the requirement to intensive care, Kim et al. (2020) used
a nationwide cohort in South Korea including data of 100 hospitals. Applying ML approach,
Izquierdo et al. (2020) find out that age, fever, and tachypnoea was the most parsimonious
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predictor of ICU admission. The results of a study revealed that ensemble-based models
perform better in predicting both ICU admission and mortality of COVID-19 cases (Subudhi
et al., 2021). Hernández-Pereira et al. (2021) predicted the need of COVID-19 patients to
regular hospital admission or intensive care unit admission using several ML algorithms. To
predict the ICU admission in next 5 days, Famiglini et al. (2021) developed three MLmodels
based on the complete blood count data.

Various studies focused on ML algorithms to only predict the fatality among COVID-19
individuals (Churpek et al., 2021; Kuno et al., 2022; Rozenbaum et al., 2021; Wanyan et al.,
2021). In a research in Iran for predicting COVID-19 mortality, seven ML algorithms were
used. Random forest showed a better performance in comparison to others (Moulaei et al.,
2022). Amulti-center cohort study was conducted to predict the ICUmortality of COVID-19
patients. The three ML models in this research presented acceptable and similar predictive
performances (Lorenzoni et al., 2021). Parchure et al. (2020) used a ML-based approach
for near-term COVID-19 in-hospital mortality. To predict the ICU outcome, Cunningham
et al. (2008) applied an Explainable Boosting Machine approach. Elhazmi et al. (2022)
applied conventional logistic regression and decision tree to predict 28-day ICU mortality
for a cohort consisting of 14 hospitals in Saudi Arabia. To develop an in-hospital mortality
score at admission for COVID-19 patients, Laino et al. (2022) used several supervised ML
algorithms. For predicting the probability of death among inpatients COVID-19, Zarei et al.
(2022) obtained the highest performance using the C5.0 decision tree algorithm.

For LOS, Ebinger et al. (2021) created three ML models on hospital days 1, 2 and 3 to
classify COVID-19 patients’ LOS into two classes. To predict the ICU admission, mortality,
and survivors’ LOS (Dan et al., 2020) developed threeML predictionmodels. They used sup-
port vector machine (SVM) algorithm for the three prediction models. Their models obtained
acceptable performance. Based on the literature, only one paper considered predicting ICU
admission, mortality, and LOS of COVID-19 patients’ simultaneously, but it only made use
of one specific ML algorithm.

The contribution of this study is to extend the studies above by developing a comprehensive
framework to predict ICU admission, mortality and LOS of COVID-19 patients by applying
and comparing several classical ML algorithms. As we find that the correlations between the
models’ predictions are low, we further leverage their individual predictive capabilities by
integrating them in a stacking ensemble approach. Lastly, as also reported in literature, the
outlined framework itself demonstrates howML can be employed to swiftly retrieve valuable
information for healthcare managers and practitioners, which insights specific to this case
are summarized.

3 Materials andmethods

The proposed framework of this study involving three main steps is illustrated in Fig. 1.
The first phase demonstrates the database and the series of actions that are carried out, to
prepare the data for modeling. These includes integration of datasets, data cleaning, dealing
with missing values, balancing the dataset, and feature selection which will form the basis
for the ML models to be applied. The output of this step is used as input for the second and
third levels. The second module applies five different ML algorithms to make prediction and
evaluate them based on the statistical index and ROC curves. In the third step, an ensemble
approach, using one linear and one non-liner meta-learner algorithm predicts the outcomes.
Lastly, the final results of the second and third phases compare and the best approach is
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Fig. 1 Architecture of the framework of this study

selected. All of these steps are applied for the three ML models (ICU admission, mortality,
and LOS) correspondingly. These processes are described in detail in the following sections.
All analyses and modeling are done in R, which is an open-source programming language.

3.1 Study population

For this study, the data were collected from the files and electronic records of two Iranian
local hospitals fromSeptember 7, 2020 toMarch 7, 2021 comprising sixmonths. All included
patients were admitted to ICU and confirmed with positive real time reverse transcriptase
polymerase chain reaction (RT-PCR) test for COVID-19. An ethic approval was obtained
from the Bushehr University of Medical Science, Iran. The collected information consists
of demographic data, chronic comorbidities, symptoms, vital signs, and laboratory results
at admission. The initial database contained more than 200 variables, from which only the
primary information collected at admission and lab test were extracted as in accordance to
the purpose of this study. This led to a final dataset with a total of 41 input variables and the
three outcome variables. The outcome variables included ICU admission versus non-ICU
admission, ICU patient’s mortality versus discharge, and to make ICU LOS a classification
problem whether it is under 7 days versus more than 7 days. In the latter case the threshold
of 7 days is chosen to reflect a below average LOS or an above average LOS as the mean
LOS was around 7 days.

The flowchart illustrating the case selection is presented in Fig. 2. Of the total 963 patients
who tested positive for COVID-19, 956 were kept in the dataset, whereas 7 were excluded
due to the incomplete medical records. From the remaining total of 956 patients, 844 were
admitted to the HDU (High Dependency Unit) and 112 received ICU care. The ICU group
included direct admissions, and a set of transferred cases from the HDU. Among the ICU
patients, about 31% died and 77 patients were ultimately discharged from this unit. To
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Fig. 2 The selection of cases of ICU admitted COVID-19 patients

determine the ICULOS, the dead caseswere excluded, such that 54 personswere hospitalized
for 7 or fewer days, whereas 23 patients were hospitalized for a longer time period.

3.2 Missing values and data imputation

One of the common issues in medical data is the presence of missing values in independent
variables (features), which if omitted, may cause a great reduction in sample size (Royston,
2004). In our dataset, as illustrated in Fig. 3. 6.8% of all observations that include 2669
fields relating to 40 different features were missing, and 36,527 fields, were fully com-
pleted. LDH, Total bilirubin, and ESR had the greatest number of empty fields and breathing
problem, cough, and systolic pressure were the variables with the fewest missing values,
respectively. Furthermore, ARI (acute respiratory infection) and NCD (non-communicable
diseases) showed no blank fields at all. Fortunately, our three target variables, ICU admission,
ICU deaths, and ICU LOS did not contain any missing values.

To decide how to deal with the variables with a high rate of empty fields medical specialist
were consulted. These talks identified some variables with a high rate of empty fields as
important (such as ESR and LDH), because they likely have a high impact on the target
variables. Therefore, it was decided to keep all of them and—instead of deleting—to apply
a suitable approach for data imputation.

To impute the data, the Multivariate Imputation by Chained Equations (MICE) algorithm
also known as "fully conditional specification" in R was applied. This R package, imputes
incompletemultivariate data by chained equations (Buuren andGroothuis-Oudshoorn, 2011).
Single imputation methods, like use of mean and median and maximum likelihood methods
have some limitation. The former, ignores uncertainty that may lead to excessively accurate
results and the latter, is used for specific kind of models such as longitudinal or structural
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Fig. 3 Percentage of missing values of the dataset. Abbreviations: LDH (lactate dehydrogenase), T.B. (total
bilirubin), ESR (erythrocyte sedimentation rate), AST (aspartate aminotransferase), ALT (alanine transami-
nase), L.disease (chronic lung disease), Nd.disease (chronic neurological disorder), K.disease (chronic kidney
disease), S.cough (sputum cough), A.pain (abdominal pain), H.disease (heart disease), INR ((international
normalized ratio), High.bp (high blood pressure), PT (prothrombin time), O2.s (O2 saturation), WBC (white
blood cells) count, R.rate (respiratory rate), Diastolic (diastolic pressure), Temp (temperature), H.rate (heart
rate), Systolic (systolic pressure), ARI (acute respiratory infection), NCD (non communicable diseases)

equation models that run under particular software (Azur et al., 2011). Compared to single
imputation, the MICE algorithm has the benefit of considering uncertainty and multiple
possible values in imputing missing data as reported by Zhang (2016).

To perform the MICE algorithm in this study, the number of multiple imputations was
set to 5, which means for each missing value in the initial dataset there will be 5 probable
values to be replaced. The selected imputationmethod for all variableswas random forestwith
maximum iterations of 40. Kernel Density Estimation (KDE) used to estimate the probability
density function of both initial and imputed data for variables. KDE is a widely used data
smoothing technique which plots the data and creates distribution curves (Gramacki, 2018).
Figure 4 illustrates the density plots of observed versus imputed data for 23 features out
of 40. Generally, imputed values demonstrate acceptable distribution compared to observed
values.
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Fig. 4 Kernel Density Estimation of initial and imputed data for some of the variables. The red curves denote
the imputed data distribution and the blue curves demonstrate the distribution of initial data. Abbreviations:
Temp (temperature), H.rate (heart rate), R.rate (respiratory rate), Systolic (systolic pressure), Diastolic (dias-
tolic pressure), O2.s (O2 saturation), Fever.H (history of fever), PT (prothrombin time), INR (international
normalized ratio), ALT (alanine transaminase), LDH (lactate dehydrogenase), ESR (erythrocyte sedimentation
rate)

3.3 Balancing the dataset

Another issue in datasets with the goal of classification is class imbalance (in the target vari-
able), which hinders a ML algorithm to distinguish the relatively uncommon, but important
class (Kotsiantis et al., 2005). Imbalances canmanifest itself between classes, when one class
has more examples than the other, or among some subsets of one class (Gu et al., 2008). In
such situations, it is reported that classification ML models demonstrate poor performance
and unreal predictions (Poolsawad et al., 2014). This problem origins from the assumptions
of learning algorithms that consider accuracy (overall error) minimization as a goal in which
the minority class contributes very little (Visa and Ralescu, 2005). From various domains of
real-world datasets, medical data usually include a low number of positive or special cases
against relatively many negatives.

In this research, the ICU admission variable, which is a binary variable was clearly imbal-
anced. This imbalance affected the prediction results badly and led the trained model to
highly accurate results without considering the minority cases (admitted patients to ICU).
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To deal with this issue, the ROSE (Random Over-Sampling Examples), an R package for
binary classification problems, was used (Lunardon et al., 2014). ROSE is a synthetic data
generation method which produces artificial data based on a bootstrap approach. The pri-
marily percentage for the two classes of ICU admission were 11.8% and 88.1% for ICU
admitted and non-admitted. After data balancing, the numbers changed to 52.2% and 47.8%
respectively, which in turn will yield more accurate predictions.

3.4 Feature selection

To select the relevant attributes for each of the three ML models, the R package Boruta
algorithmwas applied (Kursa andRudnicki, 2010). Thismethod is an extension of the random
forest algorithm by providing criteria for selection of important features (Kursa et al., 2010).
For all models, the maximum random forest run was set to 500, and the doTracewhich refers
to the verbosity level was set to 2. The graph of variable importance for ICU admission is
shown in Fig. 5 In this figure, the X axis represents the features and the Y axis indicates
the importance of these attributes in predicting the target variable. The three blue box-plots
are correspond to the minimum, average, and maximum of shadow variables. The irrelevant
features are given the color red, whereas the green box-plots represent the features that are
qualified as important. A yellow box-plot indicates that these variables are tentative as the
algorithm cannot advise to include (confirm) or exclude the feature. For ICU admission, from

Fig. 5 The Boruta algorithm feature selection for ICU admission. Green boxes denote the confirmed features,
yellow boxes represent the tentative variables, blue boxes illustrate the minimum, average, and maximum of
shadow variables, and red boxes show the irrelevant features
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Fig. 6 The Boruta algorithm feature selection for ICU mortality. Green boxes denote the confirmed features,
yellow boxes represent the tentative variables, blue boxes illustrate the minimum, average, and maximum of
shadow variables, and red boxes show the irrelevant features

the total of 41 variables, 16 confirmed as accepted, 3 as tentative, and 22 as rejected. The
top five features are in decreasing order of importance: total bilirubin, INR, sodium, PT, and
temperature.

The top five relevant attributes to predict the ICU mortality based on the Boruta result are
O2 saturation, LDH, AST, WBC, and Urea (Fig. 6). From all variables, 28 were considered
unimportant, and 4 as tentative. Important variables related to predict of ICU LOS that are
hematocrit and ESR, which are depicted in Fig. 7. Total bilirubin and NCD determined
tentative, and the rest of the features were qualified unimportant.

3.5 Machine learningmodels

Three separate ML models were developed to predict three probable outcomes: (1) the need
of ICU admission, (2) ICU mortality versus survival, and (3) LOS at the ICU for more, or
less, than 7 days. According to feature selection results of the previous section, 27, 15, and 4
features were selected as input variables for our models respectively. To predict these three
variables, we are employing five established, yet well-performing ML algorithms: RF, BL,
b-CART, KNN, and XGB; each of them is briefly explained below. Furthermore, we provide
the settings (hyperparameters) chosen as obtained by means of cross-validation on the train
set; for more details see Sect. 4.
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Fig. 7 The Boruta algorithm feature selection for ICU LOS. Green boxes denote the confirmed features, yellow
boxes represent the tentative variables, blue boxes illustrate the minimum, average, and maximum of shadow
variables, and red boxes show the irrelevant features

3.5.1 Random forest

TheRF is a supervisedDecision Tree basedML algorithm, which has the capability of coping
with the overfitting problem (Breiman, 2001). This ensemble method constructs a multitude
of decision trees on different samples and utilizes them for classifying an element based
on the majority vote (Oshiro et al., 2012). Alongside making predictions, RF is capable of
determining variable importance according to their impact on predicting the target variable
(Boulesteix et al., 2012). To specify the best branch to split and thus the importance of a
variable, the RF applies a splitting criterion, for example by using the Gini impurity. This
index computes the overall probability of misclassifying at a node (Qi, 2012), and it is
calculated as:

Gini = 1 −
c∑

i=1

p2i (1)

where pi denotes the frequency of class i at a node and c represents the number of classes
in the target variable. It ranges from 0 to 1. So, while one makes subsequential branching
decisions one should opt to choose a split that lowers theweighted sumof the resulting indices
the most. By continuing the process until a stopping criterion, e.g., the maximal number of
data points at a node (terminal node size), a tree is formed. These trees are the basis for the
random forest (RF) algorithm as it constitutes a randomly generated collection of trees.
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To set the parameters for the RF algorithm, the number of trees to grow after each split
(ntree) is 200 in this study. The final values for mtry, which refer to the number of variables
randomly sampled as candidates at each split time, are 2, 2, and6 for ICUadmission,mortality,
and LOS. The minimum terminal node size for all three prediction models is one, and there
is no limitation on the maximum number of terminal nodes.

3.5.2 LogitBoost

Boosting algorithms include several weak learners, which will be combined to construct a
final powerful learner. One of the popular boosting algorithms is LogitBoost (LB) proposed
by Friedman et al. (2000). Thismethod can be seen as the successor of theAdaboost algorithm
which was sensitive to outliers and noise. Applying a binomial log-likelihood instead of an
exponential loss function is brought up as a solution to this vulnerability, see (Kamarudin
et al., 2017) for a discussion. LB consists of three main elements: (1) a multi-class logistic
loss, (2) additive tree models, and (3) an optimization algorithmwhich minimizes the logistic
loss (Sun et al., 2014). So, this algorithm minimizes the logistic loss over the training dataset
of size n

Loss = −
n∑

i=1

log
(
1 + e−2yi F(xi )

)
, (2)

where F denotes the final classifier based on the features contained in the vector xi and
yi ∈ {−1, 1} is the set of labels (Karlos et al., 2015). Considering the model parameters, the
final number of iterations for which boosting should be run for ICU admission, mortality,
and LOS were set to 21, 31, and 11 respectively.

3.5.3 Bagged CART

Bootstrap aggregating, often referred to as bagging is a common ensemble method to reduce
the problem of overfitting problem and thereby improving the accuracy on the test set
(Breiman, 1996). Bagging can be applied to high-variance algorithms such as classification
and regression trees (CART). The first step in the bagging algorithm is creating bootstrapped
samples from the training dataset. Then, train, either classification or regression on each sub-
set, and finally, aggregate the results by simply taking the average or majority vote in case of
regression or classification (Polikar, 2006). In this study, the bagged CART was used for the
three classification models. CART algorithm splits a node based on the Gini Index criterion
(Rutkowski et al., 2014). The value of ensemble size (nbagg) for all prediction models was
considered 25.

3.5.4 KNN

The k-nearest neighbor (KNN), firstly developed by Fix and Hodges (1989), is a non-
parametric method that can be used for both classification and regression problems. Since
this algorithm considers the whole dataset each prediction and does not require a specific
training stage, it is called a lazy learner algorithm. The KNN classifies a new data point in
the test set based on k points that are relatively close, so-called neighbours. Therefore one
needs to introduce a concept of distance, which is readily incorporated in KNN algorithms
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by relying on the Minkowski distance. The distance between two points, represented by the
vectors x and x

′
, is calculated as, where xi denotes the i th element of a vector x:

dMinkowski =
(∑n

i=1

∣∣xi − x ′
i

∣∣p
)1/p

(3)

So, p (a positive value) permits the calculation of different distance measures such as the
standard Euclidean (p = 2) and Manhattan distance (p = 1). For more discussion on the
choice of the distance measures, see Abu Alfeilat et al. (2019). We rely for this research on
the standard. The final settings for k are 5, 5, and 7 – uneven numbers to break ties—for
predicting ICU admission, mortality, and LOS, respectively.

3.5.5 Extreme gradient boosting

Extreme gradient boosting (XGB) is a celebrated ensemble ML algorithm based on the gra-
dient boosted decision trees framework, which works more efficiently in terms of speed and
performance compared to most ML approaches (Chen and Guestrin, 2016). In this algo-
rithm, the objective function (measuring the model performance) consists of two parts: a loss
function L and a regularization term �.

L(φ) =
∑

i
L(ŷi , yi ) + �(F) (4)

So when training, L evaluates the loss between a prediction ŷi = ∑K
k=1 fk(xi ) with fk

additive decision trees (which are found in successive and efficient manner by considering
residuals) and yi , while � avoids overfitting by regulating the model F = ∑K

k=1 fk(xi ). The
hyperparameters of theXGB algorithms for the three predictionmodels are exhibited in Table
1. Maximum depth refers to the longest path between the root node and a leaf. Higher values
of this parameter make the model more complex and may lead to overfitting. Eta, which lies
within 0 and 1, controls the learning rate. Gamma determines the minimum loss reduction for
making a split. Column sample by tree specifies the subsample ratio of columns when a new
tree is constructed. Minimum child weight is the minimum sum of sample weight required
in a child. Subsample denotes the ratio of the training instances (Chen and Guestrin, 2016).

To optimize the hyper parameters for all the algorithms (RF,LB, b-CART,XGB, andKNN)
in the train set, the grid search method in Caret package (Kuhn, 2008) in R programming
language were used.

4 Results

In this section we present our results. We first discuss the findings in our data, after which
we apply the ML algorithms that are introduced in the previous section. Then we compare
the models to conclude that there is potential to combine them by means of a meta-model,
which results a so-called ensemble model.

4.1 Data description

All 41 predictor attributes can be classified into four groups: demographic information,
symptoms, patient background, and lab results (Table 2). About 57% of all hospitalized
patients belong to the age category of 19–60 years, which also has the highest rate compared
to other categories among all ICU admitted and survived cases. For non-survived individuals,
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Table 1 The XGB algorithm
parameters setting Prediction model XGB parameter Value

ICU admission Maximum depth 3

Eta 0.4

Gamma 0

Column sample by tree 0.6

Minimum child weight 1

Subsample 1

ICU mortality Maximum depth 2

Eta 0.3

Gamma 0

Column sample by tree 0.6

Minimum child weight 1

Subsample 0.5

ICU LOS Maximum depth 3

Eta 0.4

Gamma 0

Column sample by tree 0.8

Minimum child weight 1

Subsample 0.5

the category of age ≥ 60 consists 60% of all patients. Cough with a prevalence of 60% is
one of the common symptoms among dead cases in the ICU. Breathing problem such as
shortness of breath or short and rapid breathing at admission have the highest frequency for
all admitted, ICU, and non-survived ICU patients. About 63% of all ICU admitted individuals
experienced fever before visiting the hospital. On the other end, sputum cough and abdominal
pain have the lowest occurrence.

In the case of patients’ background diabetes is most prevalent as of the total of 956
hospitalized cases, 317 (33.15%) patients have diabetes. In the second place, high blood
pressure with the occurrence of approximately 25% for all cases, 28.31% in all ICU patients,
26.92% in survived ICU, and 31.42% in dead ICU individuals received the highest rate. In
the lab result category, the prothrombin time (PT) of 48.57% of non-survived ICU cases was
more than 17 s. The total bilirubin of 30.08% of all ICU patients and 34.28% of non-survived
ICU persons was more than 1 mg per deciliter (mg/dL). Among the 35 dead ICU cases, the
AST lab results of 17 people were more than 54 units per liter of serum. For Creatinine factor,
512 of all patients showed values more than 1 mg/dL which its frequency for non-alive ICU
people was 62.85%. The sodium level of 60% of non-survived ICU patients was less than
equal to 137 milli-equivalents per liter (mEq/L). Lactic Acid Dehydrogenase (LDH) results
of 331 of all cases indicated results of more than 600 units per liter (U/L). Among ICU
patients, 55 cases out of 112 demonstrate Erythrocyte Sedimentation Rate (ESR) more than
42 mm per hour (mm/hr).
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Table 2 Statistics of hospitalized patients’ information

Variable All patients
(n = 956)

All ICU
patients (n
= 112)

Survived
ICU patients
(n = 77)

Non-survived
ICU patients (n
= 35)

Demographic Sex (female) 464 (48.53%) 52 (46.01%) 35 (44.87%) 17 (51.42%)

Sex (male) 492 (51.46%) 61 (53.98%) 43 (55.12%) 18 (48.57%)

Age ≤ 18 52 (5.43%) 3 (2.65%) 2 (2.56%) 1 (2.85%)

19–60 554 (57.94%) 66 (58.40%) 53 (67.94%) 13 (37.14%)

Age > 60 350 (36.61%) 44 (38.93%) 23 (29.48%) 21 (60%)

Symptoms
and clinical
criteria at
admission

History of Fever 413 (43.20%) 43 (38.05%) 29 (37.17%) 14 (40%)

Cough 436 (45.60%) 59 (52.21%) 38 (48.71%) 21 (60%)

Breathing problem
(Shortness of
breath or short
and rapid
breathing)

555 (58.05%) 69 (61.06%) 44 (56.41%) 25 (71.42%)

Clinical suspicion
to ARI

487 (50.94%) 52 (46.01%) 37 (47.43%) 15 (42.85%)

Temperature ≤ 37 561 (58.68%) 66 (58.40%) 48 (61.53%) 18 (51.42%)

Temperature > 37 395 (41.31%) 47 (41.59%) 30 (38.46%) 17 (48.57%)

Heart rate ≤ 89 567 (59.30%) 60 (53.09%) 42 (53.84%) 18 (51.42%)

Heart rate > 89 389 (40.69%) 53 (46.90%) 36 (46.15%) 17 (48.57%)

Respiratory rate ≤
20

738 (77.19%) 83 (73.45%) 60 (76.92%) 23 (65.71%)

Respiratory rate >
20

218 (22.80%) 30 (26.54%) 18 (23.07%) 12 (34.28%)

Systolic blood
pressure ≤ 120

648 (67.78%) 75 (66.37%) 51 (65.38%) 24 (68.57%)

Systolic blood
pressure > 120

308 (32.21%) 38 (33.62%) 27 (34.61%) 11 (31.42%)

Diastolic blood
pressure ≤ 74

490 (51.25%) 56 (49.55%) 41 (52.56%) 15 (42.85%)

Diastolic blood
pressure > 74

466 (48.74%) 57 (50.44%) 37 (47.43%) 20 (57.14%)

O2 saturation ≤
0.9307

341 (35.66%) 49 (43.36%) 23 (29.48%) 26 (74.28%)

O2 saturation >
0.9307

615 (64.33%) 64 (56.63%) 55 (70.51%) 9 (25.71%)

History of fever 424 (44.35%) 44 (38.93%) 29 (37.17%) 15 (42.85%)

Sputum cough 135 (14.12%) 18 (15.92%) 49 (62.82%) 8 (22.85%)

Sore throat 87 (9.10%) 11 (9.73%) 7 (8.97%) 4 (11.42%)

Confusion 167 (17.46%) 20 (17.69%) 13 (16.66%) 7 (20%)

Headache 243 (25.41%) 30 (26.54%) 23 (29.48%) 7 (20%)

Abdominal pain 104 (10.87%) 13 (11.50%) 11 (14.10%) 2 (5.71%)
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Table 2 (continued)

Variable All patients
(n = 956)

All ICU
patients (n
= 112)

Survived
ICU patients
(n = 77)

Non-survived
ICU patients (n
= 35)

Patient
background

Chronic heart
disease

165 (17.25%) 23 (20.35%) 16 (20.51%) 7 (20%)

High blood pressure 236 (24.68%) 32 (28.31%) 21 (26.92%) 11 (31.42%)

Chronic lung
disease

88 (9.20%) 18 (15.92%) 8 (10.25%) 10 (28.57%)

Asthma 61 (6.38%) 9 (7.96%) 5 (6.41%) 4 (11.42%)

Chronic kidney
disease

73 (7.63%) 6 (5.30%) 5 (6.41%) 1 (2.85%)

Chronic
neurological
disorder

50 (5.23%) 6 (5.30%) 5 (6.41%) 1 (2.85%)

Smoking 96 (10%) 13 (11.50%) 9 (11.53%) 4 (11.42%)

Diabetes 317 (33.15%) 36 (31.85%) 24 (30.76%) 12 (34.28%)

Diabetes and
thyroid

5 (0.52%) 1 (0.88%) 0 1 (2.85%)

Thyroid 30 (3.13%) 2 (1.76%) 1 (1.28%) 1 (2.85%)

Cerebral vascular
accident

13 (1.35%) 3 (2.65%) 2 (2.56%) 1 (2.85%)

Lab results Hemoglobin ≤ 13 521 (54.49%) 59 (52.21%) 39 (50%) 20 (57.14%)

Hemoglobin > 13 435 (45.50%) 54 (47.78%) 39 (50%) 15 (42.85%)

WBC count ≤ 9 571 (59.72%) 57 (50.44%) 42 (53.84%) 15 (42.85%)

WBC count > 9 385 (40.27%) 56 (49.55%) 36 (46.15%) 20 (57.14%)

Hematocrit ≤ 0.4 485 (50.73%) 60 (53.09%) 39 (50%) 21 (60%)

Hematocrit > 0.4 471 (49.26%) 53 (46.90%) 39 (50%) 14 (40%)

Platelets ≤ 200 448 (46.86%) 59 (52.21%) 39 (50%) 20 (57.14%)

Platelets > 200 508 (53.13%) 54 (47.78%) 39 (50%) 15 (42.85%)

PT ≤ 17 662 (69.24%) 74 (65.48%) 56 (71.79%) 18 (51.42%)

PT > 17 294 (30.75%) 39 (34.51%) 22 (28.20%) 17 (48.57%)

INR ≤ 1 309 (32.32%) 30 (26.54%) 25 (32.05%) 5 (14.28%)

INR > 1 647 (67.67%) 83 (73.45%) 53 (67.94%) 30 (85.71%)

ALT.SGPT ≤ 52 684 (71.54%) 86 (76.10%) 64 (82.05%) 22 (62.85%)

ALT.SGPT > 52 272 (28.45%) 27 (23.89%) 14 (17.94%) 13 (37.14%)

Total bilirubin ≤ 1 715 (74.79%) 79 (69.91%) 56 (71.79%) 23 (65.71%)

Total bilirubin > 1 241 (25.20%) 34 (30.08%) 22 (28.20%) 12 (34.28%)

AST.SGOT ≤ 54 688 (71.96%) 83 (73.45%) 65 (83.33%) 18 (51.42%)

AST.SGOT > 54 268 (28.03%) 30 (26.54%) 13 (16.66%) 17 (48.57%)

Urea ≤ 22 707 (73.95%) 77 (68.14%) 59 (75.64%) 18 (51.42%)

Urea > 22 249 (26.04%) 36 (31.85%) 19 (24.35%) 17 (48.57%)
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Table 2 (continued)

Variable All patients
(n = 956)

All ICU
patients (n
= 112)

Survived
ICU patients
(n = 77)

Non-survived
ICU patients (n
= 35)

Creatinine ≤ 1 444 (46.44%) 50 (44.24%) 37 (47.43%) 13 (37.14%)

Creatinine > 1 512 (53.55%) 63 (55.75%) 41 (52.56%) 22 (62.85%)

Sodium ≤ 137 473 (49.47%) 57 (50.44%) 36 (46.15%) 21 (60%)

Sodium > 137 483 (50.52%) 56 (49.55%) 42 (53.84%) 14 (40%)

LDH ≤ 600 625 (65.37%) 72 (63.71%) 58 (74.35%) 14 (40%)

LDH > 600 331 (34.62%) 41 (36.28%) 20 (25.64%) 21 (60%)

ESR ≤ 42 556 (58.15%) 58 (51.32%) 40 (51.28%) 18 (51.42%)

ESR > 42 400 (41.84%) 55 (48.67%) 38 (48.71%) 17 (48.57%)

Potassium ≤ 4 394 (41.21%) 39 (34.51%) 26 (33.33%) 13 (37.14%)

Potassium > 4 562 (58.78%) 74 (65.48%) 52 (66.66%) 22 (62.85%)

4.2 Predictionmodels

Using the data for prediction, we applied five ML algorithms. To do so the data set was split
randomly, but balanced, in the ratio of 80:20 for predicting ICU admission, and 70:30 for
ICUmortality and ICU LOS—we chose 70:30 split in the latter two cases to ensure sufficient
data points in the test set. For model validation we applied ten-fold cross-validation.

The Receiver Operating Characteristic (ROC) curves and corresponding area under the
curve (AUC) metric are used for comparing and evaluating the performance of ML algo-
rithms for each target variable. Cohen’s kappa, accuracy, sensitivity, and specificity are other
measurements which are used in the assessment. Note that kappa is a statistical metric for
categorical variables, which takes into account chance agreement; it is zero if the agreement
coincide with random guessing, and one if there is perfect agreement; for more information
see McHugh (2012). Accuracy refers to correct predictions, while sensitivity and specificity
denote the rates of true positive and true negatives; they are defined as:

Accuracy = True posi tive predictions + True negative predictions

All predictions
; (5)

Sensi tivi t y = True posi tive predictions

(True posi tive predictions + False negative predictions)
; (6)

Speci f ici t y = True negative predictions

(True negative predictions + False posi tive predictions)
. (7)

Based on these measures, one can consider so-called balanced accuracy, which is espe-
cially useful in the case when dealing with imbalanced classes – as in our case. It is defined
as:

Balanced accuracy = Sensi tivi t y + Speci f ici t y

2
, (8)
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Fig. 8 The ROC curves of five ML algorithms for ICU admission. Abbreviations: XGB (extreme gradient
boosting), KNN (k-nearest neighbor), RF (random forest), b-CART (bagged CART), LB (LogitBoost)

Positive predictive value (PPV), also known as precision, and negative predictive value
(NPV) are also calculated for assessing the predictive performance:

PPV = True posi tives

True posi tives + False posi tives
, and

N PV = True negatives

True negatives + False negatives
. (9)

Figure 8 demonstrates the ROC curves of five ML algorithms (b-CART, XGB, LB, KNN,
and RF) for predicting ICU admission of COVID-19 patients. There is are slight differences
between the AUC scores, except for KNN. RF with the AUC of 0.976 has the highest score
followed by XGB and LB; the other metrics are shown in Table 3.We see that overall RF, and
after that XGB, achieves the best performance. From the 19 selected independent variables
to predict admission, the total bilirubin and INR were among the most important features, in
line with the findings of Sect. 3.4.

The ROC curve of ICU mortality prediction is displayed in Fig. 9. The XGB obtained the
highest AUC score (0.928), followed by KNN and RF with values of 0.917 and 0.868. Here
LB was underperforming with only 0.746. In Table 4, we find that XGB also performs well
in the other metrics.

For variable importance, out of the total 13 predictors that were selected for ICUmortality,
O2 saturation and LDH were among five top attributes of all five algorithms. LDH with the
value of 100 was the most important feature in XGB, KNN, RF, and LB algorithms, whereas
in b-CART, LDH came second with an importance score of 78.06 and O2 saturation was
most important. Other important features that were identified by the models were urea, PT,
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Table 3 Performance metrics for ICU admission

ICU admission

Algorithm Accuracy 95% CI Sensitivity Specificity Kappa Balanced
accuracy

PPV NPV

XGB 0.92 0.88–0.95 0.90 0.96 0.85 0.93 0.97 0.87

KNN 0.74 0.68–0.80 0.66 0.86 0.50 0.76 0.86 0.65

RF 0.93 0.89–0.96 0.91 0.96 0.87 0.94 0.97 0.89

CART 0.89 0.84–0.93 0.88 0.91 0.78 0.89 0.93 0.85

BLR 0.87 0.82–0.91 0.87 0.87 0.74 0.87 0.90 0.84

Fig. 9 The ROC curves of five ML algorithms for ICU mortality. Abbreviations: XGB (extreme gradient
boosting), KNN (k-nearest neighbor), RF (random forest), b-CART (bagged CART), LB (LogitBoost)

Table 4 Performance metrics for ICU mortality

ICU mortality

Algorithm Accuracy 95% CI Sensitivity Specificity Kappa Balanced
accuracy

PPV NPV

XGB 0.78 0.61–0.91 0.90 0.58 0.51 0.74 0.79 0.77

KNN 0.78 0.61–0.91 0.95 0.50 0.49 0.72 0.76 0.85

RF 0.78 0.61–0.91 1.00 0.41 0.47 0.70 0.75 1.00

CART 0.72 0.54–0.86 0.90 0.41 0.35 0.66 0.73 0.71

BLR 0.75 0.57–0.88 0.95 0.41 0.41 0.68 0.74 0.83
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INR and age. This interesting as the latter two were tentative features (see Sect. 3.4), but still
therefore included in the model.

For predicting the ICU length of stay (LOS) Fig. 10 shows that XGB outperforms with an
AUC score of 0.795, while RF is close with AUC of 0.778. Again, as for predicting admission
KNN showed the worst performance. In terms of other performance metrics demonstrated
in Table 5, we find that the b-CART algorithm generally provides better results. But, except
for KNN the models have comparable scores, which is likely due to the fact that each model
was fed with only four features.

Fig. 10 TheROCcurves of fiveML algorithms for ICULOS.Abbreviations: XGB (extreme gradient boosting),
KNN (k-nearest neighbor), RF (random forest), b-CART (bagged CART), LB (LogitBoost)

Table 5 Performance metrics for ICU LOS

ICU LOS

Algorithm Accuracy 95% CI Sensitivity Specificity Kappa Balanced
accuracy

PPV NPV

XGB 0.78 0.56–0.92 0.88 0.40 0.31 0.64 0.84 0.50

KNN 0.69 0.47–0.86 0.83 0.20 0.03 0.51 0.78 0.25

RF 0.78 0.56–0.92 0.88 0.40 0.31 0.64 0.84 0.50

CART 0.82 0.61–0.95 0.88 0.60 0.48 0.74 0.88 0.60

BLR 0.69 0.47–0.86 0.72 0.60 0.26 0.66 0.86 0.37
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4.3 Ensemblemodels

Ensemble algorithms are those learning methods which aim to construct a robust and more
accurate predictionmodel by combiningmultiple learning algorithms (Rokach, 2010).Homo-
geneous and heterogeneous ensembles are twoways of integrating weak learners in ensemble
learning techniques (Alazzam et al., 2017). Weak learners also known as base models are any
ML algorithms which perform slightly better than random guessing. Bagging and boosting
are two popular homogeneous ensemble learning, and stacking is one of the heterogeneous
algorithm. In this study, stacking ensemble learning was applied to predict three intended
outcomes (ICU admission, mortality, and LOS) and then the results compared with the best
performedML algorithm. In stacked generalization or stacking algorithm first, various learn-
ing algorithms do prediction, then their results are integrated through a combiner algorithm,
which is another machine learning method.

The starting point of using an ensemble method for improving model performance is
variation among the base models, i.e., low correlations. The idea is that the lower correlations
between models the better the accuracy of an ensemble model.

For our case the correlations between the ICU admission prediction algorithms are dis-
played in Table 6. The correlation coefficients range between -1 and 1, where -1 denotes
a perfect negative correlation and 1 indicates a perfect positive correlation, but of course a
correlation value of 0 is desired. The highest correlation is found between the b-CART and
XGB with a value of 0.5518, whereas KNN and LB show overall the most correlations close
to zero. For ICU mortality, the correlations are shown in Table 7. We see there that KNN and
b-CART have the least in common with other ML algorithms. Finally in Table 8, studying
the correlations among the algorithms for ICU LOS, we see that KNN represents the low-
est correlation with other algorithms. Of course, its performance was also considerably off
compared to the other four ML algorithms.

Table 6 Base models correlation for ICU admission

XGB KNN RF b-CART LB

XGB 1.0000000 0.08674282 0.5102666 0.55187687 0.22189048

KNN 0.08674282 1.0000000 0.3568629 − 0.15716049 0.14833669

RF 0.51026659 0.35686285 1.0000000 0.26039198 0.24939612

b-CART 0.55187687 − 0.15716049 0.2603920 1.0000000 − 0.07965935

LB 0.22189048 0.14833669 0.2493961 − 0.07965935 1.0000000

Table 7 Base models correlation for ICU mortality

XGB KNN RF b-CART LB

XGB 1.0000000 0.4291930 0.5834555 0.3202589 0.7118382

KNN 0.4291930 1.0000000 0.1055946 0.2291481 0.1906466

RF 0.5834555 0.1055946 1.0000000 0.4477695 0.5931113

b-CART 0.3202589 0.2291481 0.4477695 1.0000000 0.3259707

LB 0.7118382 0.1906466 0.5931113 0.3259707 1.0000000
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Table 8 Base models correlation for ICU LOS

XGB KNN RF b-CART LB

XGB 1.0000000 0.3316762 0.7209511 0.6036479 0.7071595

KNN 0.3316762 1.0000000 0.4432306 0.4737424 0.4432418

RF 0.7209511 0.4432306 1.0000000 0.8140235 0.5293713

b-CART 0.6036479 0.4737424 0.8140235 1.0000000 0.3637836

LB 0.7071595 0.4432418 0.5293713 0.3637836 1.0000000

Fig. 11 the overall concept of the ensemble method

To use the models in a combined fashion, one should stack them, which is illustrated in
Fig. 11. The method consist of two phases. In our research, the first phase corresponds to the
five ML algorithms (base models) that were trained to predict a target variable. The applied
base algorithms are the same as the models used in Sect. 3.2. In the second phase, a so-called
meta-model is introduced that integrates the predictions of these five base models, using the
probability scores, into a single model, resulting a single probability score. To have a more
comprehensive analysis, we consider as meta-model a Generalized LinearModel (GLM) and
a single-layered Neural Network (NNs).

Doing this stacking by means of the two ensembling algorithms for each of the three
target variables helps to answer whether the prediction performances can be improved. The
results are presented in Table 9. A boldface value under the two metrics, accuracy and kappa,
indicates that the corresponding prediction model performed the best compared with rival
models. To predict the ICU admission, the ensemble model with the neural networks as
the meta-model achieved the best result with an accuracy of 0.9577 (kappa of 0.9155). For
ICU mortality, the XGB does a slightly better job. To predict the ICU LOS it seems that
an ensemble model outperforms a single model, but the results are mixed as if considering
accuracy the GLM as the meta-model wins, but if kappa is considered one should opt for the
NN. These inconclusive results likely come from the fact that we deal with a limited dataset,
both in number of features as well as data points.
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Table 9 Performance metrics of best-model vs. ensemble models

Prediction model Best-model vs. ensemble Accuracy Kappa

ICU admission GLM (meta-model) 0.9570 0.9140

NNs (meta-model) 0.9577 0.9155

RF (best-applied model) 0.9481 0.8962

ICU mortality GLM (meta-model) 0.8155 0.4901

NNs (meta-model) 0.8111 0.5007

XGB (best-applied model) 0.8208 0.5254

ICU LOS GLM (meta-model) 0.7114 0.2431

NNs (meta-model) 0.7040 0.2794

XGB (best-applied model) 0.6750 0.2025

5 Discussion

Predicting the patient’s disease course can help the resource allocation and planning in the
hospital, which is especially important when there is a huge influx due to a pandemic. For
that purpose, we developed three predictive models for ICU admission, mortality, and LOS
by applying machine learning algorithms on hospitalized COVID-19 patients’ data. Thereby,
we show how data can be utilized to support physicians and healthcare staff in the early stage
of COVID-19 patient admission at the hospital. Specifically, we determine the probability of
admission to ICU, the mortality and whether a prolonged length of stay is likely.

As reported in our study, one of the difficulties with clinical data, perhaps even exacerbated
in times of crises, is dealing with missing critical data such as lab results or accurate intake
records. In our framework, instead of eliminating these values, an algorithm was applied
to impute missing data. Another highlight is that, instead of relying on expert opinions,
which might be unavailable for a variety of reasons, the algorithm provides the information
and thus can accelerate the decision process. Moreover, the algorithm also selects which
features (aspects) are important to consider. These features were similar with examined
biomarkers related to the COVID-19 severity and mortality reported in literature, see for
example Bousquet et al. (2020) and Yan et al. (2020).

According to the selected features for ICU admission and variable importance of the
applied ML algorithms, total bilirubin is one of the key attributes in determining the require-
ment to the ICU. Several studies, such as Araç and Özel (2021), Liu (2020), and Roedl et al.
(2021), confirm the impact of bilirubin on COVID-19 severity and mortality, specifically
high levels of bilirubin are associated with higher probabilities of a severe disease course and
mortality. Another prominent factor in the ICU admission prediction is creatinine. For exam-
ple Ghosn et al. (2021) and Lowe et al. (2021) conclude that this feature is associated with
admission, severity, mortality and LOS of hospitalized COVID-19 patients. Another impor-
tant factor in our study to predict ICU admission and mortality is INR, which is confirmed
in the systematic review of thirty-eight studies by A. Zinellu): Paliogiannis et al. (2021).
These remarkable connections between our findings and the medical literature underpin the
reliability and credibility of our model, and using ML in general.

For predicting the mortality of ICU patients, LDH is recognized as one of the important
variables by our ML algorithms. The significance of this biomarker in the fatality rate of
COVID-19 individuals is reported in for example Bousquet et al. (2020) and Yan et al.
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(2020). As indicated in prior articles, e.g., Mejía et al. (2020) and Mansab et al. (2021), O2
saturation plays a prominent role whether a patient will survive and indeed it belongs to
top fives of important variables of each ML algorithms that is applied. Also, Age is often
recognized to be important to predict mortality and is backed by Bonanad et al. (2020), which
performs a meta-analysis of COVID-19 cases from five different countries on the impact of
age on the death rate. Finally, in our model to predict an extensive LOS at the ICU, the
erythrocyte sedimentation rate (ESR) is crucial. A meta-analysis, which analyzed 16 studies,
points out the association of inflammatory markers such as ESR with severity of COVID-19
cases (Zeng et al., 2020). In addition, the importance of Hematocrit (Hct) is supported by
Kilercik et al. (2021), whereinmuch lowerHct values are observed among critical COVID-19
cases.

This research has several limitations. Firstly, the data stems from two local hospitals in
Iran, which might limit the generalizability of results. Secondly, this study is limited to one
wave of the COVID-19 pandemic. So, in the case of another wave, corresponding to for
example a different strain of the virus, will likely yield slightly different results. We believe
nevertheless, based on our discussion above, that the ML algorithms are capable to pick-up
the important medical factors in such a new situation, because the framework and procedures
followed are generic, i.e., not case dependent. Thirdly, considering the modeling, a limiting
factor is the small-sized dataset, especially for predicting the LOS. If more data becomes
available, it is likely that the predictive capability improves.

With more data at our disposal the models can be extended; currently the prediction
revolves binary classification problems. But, with for example ICU admission or mortality
one might also be interested in the time until such an event. So, in the case of a predicted ICU
admission, when will this admission likely take place, or with a positive mortality outcome
what is the most likely moment that the patient will decrease. For LOS one might be more
interested to predict the actual duration or bed occupation than merely whether it will be
more than 7 days. Note that in these extensions, instead of classification, one should consider
it as regression problem. Finally, we scoped our study to predicting three variables by means
of five established algorithms, a logical extension is to consider other ML algorithms and to
predict other relevant variables, for example ones that relate to a treatment plan.

6 Conclusion

The main objective of this research is to provide a comprehensive approach for clinicians
and managers to better manage scarce resources such as ICU beds, staff, and ventilators.
Therefore, we propose a data-driven methodology using machine learning (ML) to predict
ICU admission, mortality, and length of stay (LOS) of hospitalized COVID-19 patients. To
alleviate the issue of missing values, and not to delete data, the MICE algorithm is applied.
Then, because of the imbalanced classes in the datasets – which degrades the prediction
performance – a synthetic data generation balancing method is used to create a balanced
datasets. For these three outcome variables, potentially relevant features are selected by
using the Boruta feature selection algorithm. Next, five different ML algorithms are applied,
XGB, KNN, RF, b-CART, and BLR, which are all coded in R programming language. They
show promising performance scores in terms of accuracy and AUC. Finally, in an attempt
to further boost performance, an ensemble model is employed, which for predicting ICU
admission and LOS outperforms relying on a single ML model and yields better accuracies
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of 0.95 and 0.71 respectively. However, for ICU mortality, XGB with an accuracy of 0.82
outperforms ensembling.

Our research showcases how data, although the dataset is limited and incomplete, can be
leveraged by means of ML to support decision makers in times of a healthcare crises, such
as the COVID-19 pandemic, which centers this work. The fact that many of the key features
of the prediction models coincide with the factors found in medical literature confirms the
reliability and credibility of using our approach andML in general. The models studied focus
on determining whether the patient will be admitted to the ICU, will decease and whether a
prolonged LOS is likely. Besides enriching this study with more data or repeating the study
in other healthcare settings (different hospital, another COVID-19 wave, new virus) or for
other variables, predicting the actual timings of those events is a logical starting point for
further research.
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