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Abstract
Predictive monitoring techniques produce signals in case of a high predicted
probability of an undesirable event, such as mortality, heart attacks, or machine
failure. When using these predicted probabilities to classify the unknown out-
come, a decision threshold needs to be chosen in statistical andmachine learning
models. In many cases, this is set to 0.5 by default. However, this may not lead
to an acceptable model performance. To mitigate this issue, different threshold
optimization approaches have been proposed in the literature. In this paper, we
compare existing thresholding techniques to achieve a desired false alarm rate,
and also evaluate the corresponding precision and recall performance metrics.
A simulation study is conducted and a real-world example on a medical dataset
is provided.
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1 INTRODUCTION

Predictive ProcessMonitoring (PPM) is aimed at detecting potential problems in processes before they occur. This involves
modeling the outcome using statistical or Machine Learning (ML) models, which allow prediction of high risk situations
across domains such as medicine1,2 and manufacturing.3–5 With the surge of available data, a wide variety of models have
been proposed in the literature, including logistic regression, random forests, and neural networks.6 Yet, when it comes to
the practical value and performance of any PPM method, post-modeling decisions also need to be considered. One such
choice is the probability threshold: after fitting the model and obtaining a vector of probabilities, a threshold has to be
chosen to make a final classification. For binary outcomes, researchers and practitioners often rely on a threshold of 0.5.
However, this may not be an optimal choice, since data characteristics such as class imbalance can skew the probabili-
ties in a particular direction and therefore overpredict the majority class,7,8 rendering a cutoff of 0.5 unsuitable.9 While
approaches involving resampling algorithms such as SMOTE10 have been developed to address that challenge, their use
may lead to issues such as poorly calibrated estimates.11 Furthermore, certain applications require practitioners to limit
the False Alarm Rate (FAR) to prevent alarm fatigue12 as well as accommodate constrained resources. Therefore, there is
a demand for methods that can be adapted to practitioner needs while being computationally efficient. To address this,
different threshold tuning techniques have been proposed in the literature.
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For instance, Huberts et al.13 applied logistic hierarchical regression and XGBoost in a mental health setting and pro-
posed a data-driven tuning procedure to achieve a desired FAR. Being based on a split-sample approach, this method
however comes with a drawback: the model needs to be re-trained several times, and therefore this technique comes with
a high computational cost. Alternative methods have been proposed that do not have this requirement. Two examples are
the GHOSTmethod14 and Bootstrap approach.15,16 Both of these techniques use the predicted probabilities in the training
set to adjust the classification threshold, and therefore do not involve any re-fitting of the model in the thresholding pro-
cedure. Along this line of reasoning, Albers and Kallenberg17 proposed a method that can be used to tune the probability
threshold based on nonparametric theory of order statistics (OS). Due to not requiring any resampling or grid-search,
this method17 has a very low computational demand, and has been theoretically studied. However, to the best of our
knowledge, its performance has thus far not been empirically contrasted with alternatives in a prediction setting.
In the current study, we compare these four existing techniqueswith a focus on two aspects: (1) howwell a givenmethod

approximates a pre-set FAR, and (2) what the performances of the different techniques are in terms of precision and recall
values. The thresholding approaches are tested in a simulation study and illustrated on a real-world medical dataset of
ICU patients. This paper is structured as follows: first, we introduce the methods that we consider in our comparison
(Section 2). Next, we describe themedical dataset as well as themechanisms underlying the simulated datasets (Section 3).
Finally, we discuss results (Section 4) as well as potential avenues for future research (Section 5).

2 THRESHOLDINGMETHODS

We compare four different threshold tuning methods, which we describe in this section. Our goal is to use these methods
to obtain thresholds that approximate a desired, pre-set FAR on the test set as closely as possible. The outcome in the
data is binary, with 𝑦 = 0 describing controls and 𝑦 = 1 describing cases. Let 𝐹𝐴𝑅𝑝𝑟𝑒 denote the user-specified FAR, and
𝐹𝐴𝑅𝑡𝑒𝑠𝑡 denote the FAR calculated on the test setwhen the obtained threshold is used to convert the predicted probabilities
to classes.
The general set-up the fourmethods share in this study is as follows: (i)We split the dataset into a training (70%) and test

set (30%). We use stratified sampling to preserve the class distribution. (ii) Next, we fit the model (e.g., logistic regression)
on the training set. In the first three methods (i.e., 1. Order Statistics, 2. Bootstrap, 3. GHOST), this model is used for the
thresholding procedure as well as to predict instances on the test set. In the last method (i.e., 4. Split Sample), the model
fitted on the entire training set is not used for threshold tuning, but only for calculating the predictions on the test set:
in this case, the entire training set is further split into an internal training and validation set for threshold tuning (see
Section 2.4). (iii) Using one of the four methods, the threshold is tuned on the training set. (iv) Lastly, we use the model
fitted on the entire training set to calculate probabilities on the test set. Then, we apply the estimated threshold to convert
these probabilities to classes.
First, we introduce the first three methods mentioned above: OS, Bootstrap, and GHOST. Steps (i) and (ii) are applied

first. Next, the model fitted on the training set is used to obtain the probabilities (denoted as 𝑝𝑖) on the training set for
𝑖 = 1, … , 𝑛𝑡𝑟𝑎𝑖𝑛, where𝑛𝑡𝑟𝑎𝑖𝑛 denotes the sample size of the training set. Then, the sequence of steps for those threemethods
is as follows:

2.1 Order statistics

The first method uses OS to obtain the threshold and is based on nonparametric theory.17 In their paper, the authors intro-
duced the Bias Criterion (BC) and the Exceedance Probability Criterion (EPC) for the design of univariate control charts.
In this paper we focus on the BC, which aims to provide a pre-specified FAR in expectation. This can be implemented
using the following procedure:

1. Order the probabilities as 𝑝(1) ≤ 𝑝(2) ≤ … ≤ 𝑝(𝑛𝑡𝑟𝑎𝑖𝑛) with 𝑝(1) the minimum and 𝑝(𝑛𝑡𝑟𝑎𝑖𝑛) the maximum OS of the esti-
mated probabilities, respectively. Note that in this approach, only the in-control instances (with sample size 𝑛𝐼𝐶 ; 𝑦 = 0)
in the training set are used to compute the threshold.

2. Calculate the threshold:

𝑡𝑂𝑆 = (1 − 𝜆)𝑝(𝑛𝐼𝐶+1−𝑘) + 𝜆𝑝(𝑛𝐼𝐶−𝑘), (1)

where 𝜆 = 𝐹𝐴𝑅𝑝𝑟𝑒 + 𝛿, 𝛿 = 𝑛𝐼𝐶𝐹𝐴𝑅𝑝𝑟𝑒 − 𝑘, and 𝑘 = ⌊𝑛𝐼𝐶𝐹𝐴𝑅𝑝𝑟𝑒⌋.
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VON STACKELBERG et al. 501

Note that in the version used in this study, weighing is used instead of random switches as suggested by Albers and
Kallenberg.17 This ensures that the threshold is a fixed constant for each sample, rather than a random variable. For more
details on the derivation, we refer to Appendix A.

2.2 Bootstrap

Another approach we examine in this study is based on a bootstrap approach (BST) to obtain a limit for the predicted
probabilities.15,16

1. Draw 𝐵 bootstrap samples of the predicted probabilities from the training set.
2. For each bootstrap sample, calculate the 100 × (1 − 𝐹𝐴𝑅𝑝𝑟𝑒)𝑡ℎ percentile.
3. Let the threshold 𝑡𝐵𝑆𝑇 then be the average of the 100 × (1 − 𝐹𝐴𝑅𝑝𝑟𝑒)𝑡ℎ percentiles in the 𝐵 samples.

We set the number of bootstrap samples to 𝐵=1000. Note that while the model is trained on the entire training set, the
control limits are obtained only using the in-control instances (𝑦 = 0) of the training set.16

2.3 GHOST

This technique is based on the algorithm proposed by Esposito et al.14 and altered to fit the current study. We define a
fixed vector of thresholds 𝑔 ∈ 𝐺 that are going to be tested. Let 𝐹𝐴𝑅𝑗,𝑔 be the FAR obtained on the subset of the training
set 𝑗 ∈ 𝐽 for a particular threshold 𝑔. Let |𝐽| be the number of subsamples taken from the training data. The procedure for
the GHOST algorithm is then as follows:

1. Convert the training probabilities to classes based on a vector of thresholds 𝐺 that is pre-defined and fixed.
2. Draw |𝐽| stratified subsamples and calculate the metric of interest on each of them across thresholds 𝑔 ∈ 𝐺. In this

study, we are interested in the FAR.
3. Calculate the median FAR per threshold 𝑔 over all |𝐽| subsamples, denoted as 𝐹𝐴𝑅𝑚𝑒𝑑,𝑔.
4. Select the final threshold 𝑡𝐺𝐻𝑂𝑆𝑇 such that it yields the smallest absolute distance between 𝐹𝐴𝑅𝑝𝑟𝑒 and 𝐹𝐴𝑅𝑚𝑒𝑑,𝑔, that

is, 𝑡𝐺𝐻𝑂𝑆𝑇 = 𝑚𝑖𝑛(𝑔 ∈ 𝐺 ∶ 𝑚𝑖𝑛(|𝐹𝐴𝑅𝑝𝑟𝑒 − 𝐹𝐴𝑅𝑚𝑒𝑑,𝑔|)). Note that the first min argument is used to ensure a unique
solution.

In this study, |𝐽| is set to 50 and the subsamples has a size of 20% of the original training data. The thresholds are chosen
as 𝑔 ∈ 𝐺 = {0, 0.001, 0.002, … , 1}. We perform random sampling without replacement, based on the default setting chosen
by the authors.14 Originally, the authors implemented their method for Cohen’s Kappa but noted that their algorithm can
be adapted for the use of other metrics as well,14 therefore making it suitable for the set-up adopted in this study.

2.4 Split sample

The lastmethodwe test is the Split Samplemethod (SSM). Thismethod is based on the idea of using a repeated split sample
approach to obtain the classification threshold on the training set that can subsequently be used to classify probabilities
in the test set. It therefore differs from methods 1-3 as with every split iteration, the model has to be re-estimated. After
obtaining the threshold, a new model is fitted on the entire training set for prediction on the test set. The set-up is based
on the work by Huberts et al.13; for changes made to the original algorithm, we refer to Appendix B.
Let 𝐹𝐴𝑅𝑣𝑎𝑙 be defined as the FAR obtained on the internal validation set. By choosing a value 𝑢, a vector of thresholds

𝐺 = {0, 1∕𝑢, 2∕𝑢,… , 1 − 2∕𝑢, 1 − 1∕𝑢, 1} to be tested is defined. The procedure described in the steps 1, 2, and 3 below
is repeated 𝑄 times and the thresholds 𝑡𝑞 (with 𝑞 = 1,… , 𝑄) obtained in the 𝑄 repetitions are stored in a vector 𝑇. The
threshold is computed in step 4.

1. Split the training set into an internal training and validation set. Set 𝑤 = 1∕𝑢.
2. Fit the model on the internal training set. Predict on the internal validation set to obtain a vector of probabilities.
3. Use the following steps to find the threshold:
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502 VON STACKELBERG et al.

(i) Using the thresholds in 𝐺, convert the probabilities in the internal validation set to classes and calculate the FAR
for each of those thresholds to obtain the vector for 𝐹𝐴𝑅𝑣𝑎𝑙, consisting of all values 𝐹𝐴𝑅𝑣𝑎𝑙,𝑔 (i.e., the obtained
FAR when threshold 𝑔 is used for all 𝑔 ∈ 𝐺).

(ii) Find the minimum threshold corresponding to the smallest absolute distance between 𝐹𝐴𝑅𝑝𝑟𝑒 and 𝐹𝐴𝑅𝑣𝑎𝑙,𝑔, that
is, 𝑡𝑞 = 𝑚𝑖𝑛(𝑔 ∈ 𝐺 ∶ 𝑚𝑖𝑛(|𝐹𝐴𝑅𝑝𝑟𝑒 − 𝐹𝐴𝑅𝑣𝑎𝑙,𝑔|)).

(iii) Update 𝑤 to 𝑤 = 2𝑤∕𝑢 and 𝐺 to {𝑡𝑞 − 𝑢𝑤∕2, 𝑡𝑞 − 𝑢𝑤∕2 + 𝑤, 𝑡𝑞 − 𝑢𝑤∕2 + 2𝑤,… , 𝑡𝑞 − 𝑢𝑤∕2 + (𝑢 − 1)𝑤, 𝑡𝑞 −
𝑢𝑤∕2 + 𝑢𝑤}. If 𝑤 > 𝑤𝑙𝑖𝑚, go back to (i). If this is not the case, store 𝑡𝑞 in 𝑇.

4. Let the final threshold be 𝑡𝑆𝑆𝑀 = 𝑚𝑎𝑥(𝑇).

We fix the proportion of the internal training and validation set to 0.7 and 0.3, respectively. We repeat the splitting 𝑄=5
times. To specify the range of thresholds, we set 𝑤𝑙𝑖𝑚 = 10−5 and 𝑢 = 200. We fix the smallest threshold to be tested to
be the minimum probability as estimated on the internal validation set. Note that a higher threshold is associated with a
lower FAR; therefore, by taking the maximum obtained threshold in the five splits, a different rationale is followed in this
approach compared to taking the average in the other methods.

3 PERFORMANCE EVALUATION

The thresholding methods are compared with respect to three metrics: the precision, recall, and the difference between
the desired and obtained FAR. All metrics are calculated on the test set. Let 𝑇𝑃 denote the number of true positives, 𝐹𝑃
the number of false positives, 𝐹𝑁 the number of false negatives, 𝑇𝑁 the number of true negatives, and 𝑡 the threshold.
The FAR, precision and recall are then defined as follows:

True class: control (y=0) True class: case (y=1)
Predicted class: control (y=0) True Negative (TN) False Negative (FN)
Predicted class: case (y=1) False Positive (FP) True Positive (TP)

𝐹𝐴𝑅(𝑡) =
𝐹𝑃(𝑡)

𝐹𝑃(𝑡) + 𝑇𝑁(𝑡)
(2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑡) =
𝑇𝑃(𝑡)

𝑇𝑃(𝑡) + 𝐹𝑃(𝑡)
(3)

𝑅𝑒𝑐𝑎𝑙𝑙(𝑡) =
𝑇𝑃(𝑡)

𝑇𝑃(𝑡) + 𝐹𝑁(𝑡)
(4)

As can be seen in the definitions above, precision describes the number of retrieved relevant items among the retrieved
items, whereas recall is a measure of retrieved relevant items among the relevant items. Precision shows how effective a
fitted model is at separating instances that are not relevant from the set of instances that were retrieved. A recall value
of one can be achieved by simply classifying every instance as a case (𝑦 = 1).18 Ideally, a model produces predictions that
render both metrics to be as high as possible.

3.1 ICU dataset

As a real-world illustration, we test the methods on the eICU Collaborative Research Database19 which includes data
collected at critical care units throughout the United States.19,20 We use a range of predictors (see below) to predict the
probability of mortality. To pre-process the data and choose variables, steps based on previous work are followed.21,22,1
Hereby, individual patient time series are used to create seven segments (full time series, first 10%, last 10%, first 25%,
last 25%, first 50%, last 50%) and summary statistics are calculated in each segment to create features (i.e., minimum,
maximum,mean, SD, skew, number ofmeasurements).21 This results in a total of𝑚= 588 predictors for𝑛= 30658 patients,

1 The script published by Ulmer et al.21 (available on Github) is used as a basis and altered to generate the dataset used in this study.
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VON STACKELBERG et al. 503

with each row in the dataset corresponding to an individual patient. The final dataset contains 11.49% cases (i.e., patients
who died; 𝑦 = 1). The following variables are included:

∙ blood pH value
∙ respiratory rate
∙ body temperature
∙ heart rate
∙ diastolic blood pressure
∙ systolic blood pressure
∙ Glasgow coma scale (verbal)
∙ Glasgow coma scale (motor function)
∙ Glasgow coma scale (eyes)
∙ Glasgow coma scale (total)
∙ fraction of inspired oxygen
∙ blood glucose level
∙ blood oxygen saturation
∙ mean arterial pressure

Due to the high number of predictors, we fit logistic Ridge regression and LASSO regression models to deal with issues
such as separation and collinearity.23–25 The Ridge estimator uses the 𝓁2 penalty and is defined as follows:

𝛽(𝜆) = 𝑎𝑟𝑔𝑚𝑖𝑛||𝑌 − 𝑋𝛽||2
2
+ 𝜆||𝛽||2

2
. (5)

The LASSO estimator uses the 𝓁1 penalty:

𝛽(𝜆) = 𝑎𝑟𝑔𝑚𝑖𝑛||𝑌 − 𝑋𝛽||2
2
+ 𝜆||𝛽||1. (6)

The penalty parameter in the regression models is tuned using 10-fold cross-validation (CV), with minimal deviance as
a criterion.26 We estimate the predictive performance of the final model (i.e., FAR, precision, recall) using 5-fold CV. To
preserve the class distribution, we use stratified sampling. The desired FAR values are set to the following: 𝐹𝐴𝑅𝑝𝑟𝑒 ∈ {0.5,
0.2, 0.1, 0.05, 0.01}. The results are displayed and discussed in Section 4.

3.2 Simulation

Covariates X are drawn from the multivariate normal distribution with mean vector 𝜇 = 0𝑇 and variance-covariance
matrix Σ with variances diag(Σ) = 1 for individuals (i = 1, \ldots , n). Coefficients are fixed as 𝛽 = (0.2, −0.5, 0.8)𝑇 . Val-
ues for the binary outcome 𝑦 = (𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛)𝑇 are generated from the Bernoulli distribution with probability 𝑝𝑖 for
each individual 𝑖. Let 𝛽 be defined as the vector of coefficients for the𝑚 = 3 predictors and 𝛽0 be the intercept. Then the
estimated model is of the form

𝑙𝑜𝑔

(
𝑝𝑖

1 − 𝑝𝑖

)
= 𝛽0 + 𝑋𝑖,1𝛽1 + 𝑋𝑖,2𝛽2 + 𝑋𝑖,3𝛽3. (7)

The influence of sample size, correlation between variables, and the proportion of cases (𝑦 = 1) is studied. The number
of simulation iterations is set to 𝑛𝑠𝑖𝑚 = 500. The following conditions are varied:

1. sample size: 𝑛 ∈ {200, 1000}
2. correlation between covariates: 𝑟 ∈ {0, 0.3}
3. approximate proportion of cases: 𝑝𝑟𝑜𝑝𝑐𝑎𝑠𝑒 ∈ {0.2, 0.4}

The desired FAR values are set to the following: 𝐹𝐴𝑅𝑝𝑟𝑒 ∈ {0.5, 0.2, 0.1, 0.05}. The datasets generated are split into a
training and a test set containing 70% and 30% of the observations, respectively. When splitting the data, we use stratified
sampling such that the class distribution remains intact. Lower 𝐹𝐴𝑅𝑝𝑟𝑒 values are not tested to avoid issues related to
lower case numbers in combination with a lower sample size.
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504 VON STACKELBERG et al.

4 RESULTS

The current study is completed in R27 (version 4.2.1). The packages MASS28 (version 7.3-57) and DescTools29 (version
0.99.46) are used to generate the simulated datasets. The regression models are fitted using glm27 and glmnet26 (version
4.1-4). Caret30 (version 6.0-93) is used to split the data into training and test sets.

4.1 ICU data

In our applied data example, there is little variation in the differences between the pre-set and approximated FAR
across the OS, Bootstrap, and GHOST methods. The SSM as implemented in the current set-up mostly underper-
forms in comparison with the other methods. Differences between 𝐹𝐴𝑅𝑝𝑟𝑒 and 𝐹𝐴𝑅𝑡𝑒𝑠𝑡 range from 0.0001 (condition:
OS/Bootstrap, Ridge regression, 𝐹𝐴𝑅𝑝𝑟𝑒 = 0.5) to 0.0199 (condition: Split Sample, LASSO regression, 𝐹𝐴𝑅𝑝𝑟𝑒 = 0.5)
(Table 1, Table E1/Appendix E).

TABLE 1 Pre-set FAR and obtained FAR values for the different thresholding methods on the ICU dataset.

Model Pre-set FAR FAR Order Statistics FAR Bootstrap FAR GHOST FAR Split Sample
Ridge regression 0.5 0.5001 0.4999 0.4993 0.4811

0.2 0.2027 0.2028 0.2025 0.1934
0.1 0.1022 0.1022 0.1023 0.0972
0.05 0.0523 0.0521 0.0521 0.0483
0.01 0.0108 0.0108 0.0109 0.0092

Abbreviation: FAR, false alarm rate.

The range of precision and recall values depends on the pre-set FAR (Appendix C, Tables C1 and C2). In general, it can
be seen that the Split Sample-based method performs best in terms of precision, and worst in terms of recall. The other
methods performs roughly similarly, with no clear differences between the Ridge and LASSO models. Recall increases
with higher pre-set FAR values, while precision decreases. Oppositely, precision increases in scenarios with a lower pre-
set FAR. For readability, the results of Ridge regression are reported in the table below, and for the LASSO results we refer
to Table E1/Appendix E.

4.2 Simulation study

Overall, it can be seen that the results obtained in the simulation study fall in line with observations made in the case
study. While the OS, Bootstrap, and GHOST based methods perform similarly in terms of obtained results, the SSM as
set up in this study often performs significantly different in the three chosen evaluation measures. Across conditions,
the main determining factors influencing results are (i) the desired FAR, and (ii) the sample size. The pre-set FAR natu-
rally influences the obtained threshold and therefore has an effect on precision and recall; with a lower threshold, recall
becomes higher and precision reduces. In scenarios with smaller sample sizes, the variance in results becomes more pro-
nounced across conditions (Figures 1, 2). For the sake of brevity, we focus on scenarios with 𝑝𝑟𝑜𝑝𝑐𝑎𝑠𝑒 = 0.2 and 𝑟 = 0.3
below. However, similar patterns are observed across most conditions.
In terms of obtained FAR values, we observe that the OS, Bootstrap, and GHOST basedmethods usually produce results

close to each other, while the Split Sample based method tends to produce a FAR that is lower in comparison (Figures 1,
2). This difference becomes more pronounced in smaller samples. Especially results obtained from the Bootstrap and
OS methods approximate each other, but which method has an edge in terms of mean differences between 𝐹𝐴𝑅𝑝𝑟𝑒 and
𝐹𝐴𝑅𝑡𝑒𝑠𝑡 depends on the pre-set FAR: while the Bootstrap performs better in scenarios where 𝐹𝐴𝑅𝑝𝑟𝑒 = 0.5, the OSmethod
usually outperforms it in scenarios where the pre-set FAR is lower (Table 2).
When inspecting the obtained values for precision, the Split Sample based method performs slightly better (Figures 1,

2). This indicates that a larger number of positive predictions are correct. However, this approach also yields the highest
number of errors for precision: under certain conditions, no result can be obtained for this metric. Note that precision
depends on the number of true positives and false positives (Equation 3): therefore, this can happen when for example, no
cases (𝑦 = 1) are predicted, as the number of true positives as well as the number of false positives is 0. Those scenarios

 10991638, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3436 by U

va U
niversiteitsbibliotheek, W

iley O
nline L

ibrary on [22/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



VON STACKELBERG et al. 505

FAR pre−set 0.05 FAR pre−set 0.1 FAR pre−set 0.2 FAR pre−set 0.5

FA
R

precision
recall

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
 v

al
ue Method

Order statistics
Bootstrap
GHOST
Split sample

F IGURE 1 Obtained FAR, precision and recall for 𝑛 = 200, 𝑟 = 0.3, 𝑝𝑟𝑜𝑝𝑐𝑎𝑠𝑒 = 0.2.
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F IGURE 2 Obtained FAR, precision and recall for 𝑛 = 1000, 𝑟 = 0.3, 𝑝𝑟𝑜𝑝𝑐𝑎𝑠𝑒 = 0.2.

TABLE 2 Pre-set FAR and mean obtained FAR values for 𝑛 = 1000, 𝑝𝑟𝑜𝑝𝑐𝑎𝑠𝑒 = 0.2, 𝑟 = 0.3.

Pre-set FAR Mean FAR Order Statistics Mean FAR Bootstrap Mean FAR GHOST Mean FAR Split Sample
0.5 0.5031 0.5026 0.5056 0.4583
0.2 0.19999 0.2006 0.2036 0.1649
0.1 0.1014 0.1031 0.1057 0.0729
0.05 0.0501 0.0519 0.0565 0.0312

Abbreviation: FAR, false alarm rate.
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506 VON STACKELBERG et al.

are thus not included in the calculations (Appendix D). Concerning obtained recall values, a different pattern emerges:
generally speaking, the SSMperformsworst inmost cases, and the difference oncemore generally increase inmagnitude in
smaller samples. The other three methods produce results that are very close to each other. In terms of the computational
time, the OS based method generally was the quickest approach (Figure F1/Appendix F).

5 DISCUSSION AND CONCLUSION

How to convert probabilities to classes is a crucial part of many predictive modeling efforts. While fitting the model itself
(rightly) receives considerable attention in the literature, we argue that thresholding choices made post-modeling can
influence the final classification substantially. Paying attention to the thresholding technique can save computational
resources, allowpractitioners to tune towards ametric of interest and in some situations eliminates the need for resampling
in cases of class imbalance.
The key results show that methods based on OS or bootstrapping often performs best and fairly similar to each other.

While bootstrapping works slightly better in situations where the desired FAR is 0.5, the OS based method has a slight
edge in many scenarios where the desired FAR is lower. The OS based method furthermore provides the advantage of
having an overall low computational cost - in contrast, methods based on techniques such as CV require a model to be
re-estimated several times, and bootstrapping requires resampling from the set of probabilities 𝐵 times.
As food for thought concerning future research, we believe that it is important to consider practical challenges when

approaching predictive monitoring research. To ease implementations in real-world scenarios, several steps can be taken.
First of all, the constant and at times changing influx of data inmodern applications should be considered.When and how
to update both the model and threshold to cope with data changes31,32 therefore naturally forms the next step succeeding
and complementing the current study. Secondly, the chosen use case determines which specific metric is the focus when
tuning the threshold. While the FAR might be at the center in one situation, practitioners may need to focus on another
metric, such as recall, or consider a range of thresholds instead in another scenario.33,34 In their current state, only the
Split Sample based method as well as GHOST offer the flexibility to tune towards a wide range of outcomes apart from the
FAR. Based on the results obtained in the current study, we believe that adapting the OSmethod to tune to other outcomes
may provide a viable, fast alternative to popular methods such as bootstrap and split sample approaches, and therefore
opens ample opportunities for future work.

DATA AVAILAB IL ITY STATEMENT
We used data from the eICU collaborative research database, as well as simulated data. Details on how to obtain the eICU
data and the simulation procedure are included in the manuscript. Additionally, information and access to the eICU
dataset can be obtained at https://eicu-crd.mit.edu/, whilst the code used to simulate data is available upon request.
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APPENDIX A: BIAS CRITERION FOR OS APPROACH
Consider any random variable 𝑋𝑖 for 𝑖 = 1, … , 𝑛𝐼𝐶 . Then consider the Order Statistics (OS) 𝑋(1) ≤ 𝑋(2) ≤ … ≤ 𝑋(𝑛𝐼𝐶) with
𝑋(1) the minimum and 𝑋(𝑛𝐼𝐶) the maximum OS, respectively.
Let 𝐹𝐴𝑅𝑝𝑟𝑒 be the desired false alarm rate (FAR). Then, consider

𝑘 = ⌊𝑛𝐼𝐶𝐹𝐴𝑅𝑝𝑟𝑒⌋ (A1)

with ⌊𝑥⌋ the floor function. First consider a one-sided upper control limit𝑈𝐶𝐿 = 𝑋(𝑛𝐼𝐶−𝑘). This will have conditional (on
the dataset) false alarm probability equal to 𝑃𝑛𝐼𝐶 = 𝑃(𝑋𝑛𝐼𝐶+1 > 𝑈𝐶𝐿|(𝑋1, … , 𝑋𝑛𝐼𝐶 )). Using nonparametric theory based
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on the uniform distribution, it can be shown (see Albers and Kallenberg17) that the expectation of this equals

𝐸(𝑃𝑛𝐼𝐶 ) =
𝑘 + 1

𝑛𝐼𝐶 + 1
>
𝑘 + 𝛿

𝑛𝐼𝐶
= 𝐹𝐴𝑅𝑝𝑟𝑒, (A2)

where 𝛿 = 𝑛𝐼𝐶𝐹𝐴𝑅𝑝𝑟𝑒 − 𝑘. This can be approximately compensated (turned unbiased) by taking an adjusted limit
according to

𝑈𝐶𝐿
∗
= (1 − 𝜆)𝑋(𝑛𝐼𝐶+1−𝑘) + 𝜆𝑋(𝑛𝐼𝐶−𝑘), (A3)

where 𝜆 = 𝐹𝐴𝑅𝑝𝑟𝑒 + 𝛿. Note that, for unbiasedness, Albers and Kallenberg17 suggest using a random Bernoulli variable
𝑉 with 𝑃(𝑉 = 1) = 1 − 𝑃(𝑉 = 0) = 𝜆, such that the control limit also becomes a random variable for each sample. We
chose to use a weighing between 𝑋(𝑛𝐼𝐶−𝑘) and 𝑋(𝑛𝐼𝐶+1−𝑘) instead. Note also that, for very small 𝐹𝐴𝑅𝑝𝑟𝑒 such that 𝑘 = 0,
we require 𝑋(𝑛𝐼𝐶+1) which is not part of the sample. Since we are dealing with probabilities in this paper, this can be set
equal to 1. Essentially, the reason for this is that using 𝑋(𝑛𝐼𝐶) as limit would not yield the desired performance, hence
extrapolation towards 1 is required.

APPENDIX B: ADAPTATIONS OF ORIGINAL CV ALGORITHM
Asmentioned in themain text, the original algorithmproposed byHuberts et al.13 is altered to accommodate our particular
dataset characteristics and for comparison purposes. It should be noted that these alterations may not be suitable for
other situations; in their study, the algorithm in its original set-up showed good performance. The following aspects are
adapted:

∙ Splitting the sample: we use stratified sampling when splitting the training set into an internal training/validation
set.

∙ Choosing a threshold: we choose the threshold in 𝐺 by selecting the threshold giving the smallest absolute difference
between 𝐹𝐴𝑅𝑝𝑟𝑒 and 𝐹𝐴𝑅𝑣𝑎𝑙.

∙ Stopping condition: the original algorithm included a set of stopping conditions related to the difference between the
obtained FAR and 𝐹𝐴𝑅𝑣𝑎𝑙,𝑔 (e.g., the threshold 𝑡𝑞 was included in 𝑇 if |𝐹𝐴𝑅 − 𝐹𝐴𝑅𝑣𝑎𝑙,𝑔| ≤ 0.01𝐹𝐴𝑅𝑝𝑟𝑒). We take this
step out to ensure that a threshold can be found in more scenarios.

∙ Calculation FAR: we calculate 𝐹𝐴𝑅𝑣𝑎𝑙,𝑔 as 𝐹𝐴𝑅𝑣𝑎𝑙,𝑔 = 𝐹𝑃∕(𝐹𝑃 + 𝑇𝑁) for each threshold 𝑔.

APPENDIX C: FURTHER RESULTS

TABLE C1 Pre-set FAR and obtained precision values for the different thresholding methods on the ICU dataset.

Model Pre-set FAR
Precision Order
Statistics

Precision
Bootstrap

Precision
GHOST

Precision
Split Sample

Ridge regression 0.5 0.1944 0.1945 0.1946 0.1997
0.2 0.3276 0.3275 0.3278 0.3361
0.1 0.447 0.4471 0.4469 0.4549
0.05 0.5563 0.5568 0.5566 0.5694
0.01 0.7703 0.7713 0.7694 0.7819

LASSO regression 0.5 0.1941 0.1941 0.1938 0.1998
0.2 0.329 0.3291 0.3289 0.335
0.1 0.443 0.4428 0.443 0.4497
0.05 0.5543 0.5542 0.5547 0.5736
0.01 0.7716 0.7707 0.7681 0.7791

Abbreviation: FAR, false alarm rate.
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VON STACKELBERG et al. 509

TABLE C2 Pre-set FAR and obtained recall values for the different thresholding methods on the ICU dataset.

Model Pre-set FAR
Recall Order
Statistics

Recall
Bootstrap

Recall
GHOST

Recall Split
Sample

Ridge regression 0.5 0.9299 0.9299 0.9296 0.9248
0.2 0.7612 0.7612 0.7612 0.7544
0.1 0.6368 0.6368 0.6368 0.6258
0.05 0.5048 0.5048 0.504 0.4923
0.01 0.2802 0.2819 0.2817 0.2541

LASSO regression 0.5 0.9293 0.9293 0.9293 0.9233
0.2 0.7643 0.7643 0.7641 0.7533
0.1 0.6289 0.6289 0.6297 0.6178
0.05 0.5051 0.5057 0.5057 0.4889
0.01 0.2785 0.2791 0.2808 0.2592

Abbreviation: FAR, false alarm rate.

APPENDIX D: ERRORS
As described in section 4.2, in some cases, no result for precision can be obtained. This happens more often when the Split
Sample approach is used, 𝐹𝐴𝑅𝑝𝑟𝑒 is lower, and the sample size is smaller (𝑛 = 200). The percentages are reported in the
context of 𝑛𝑠𝑖𝑚 = 500 iterations (Table D1).

TABLE D1 Precision error percentages.

n prop𝒄𝒂𝒔𝒆 FAR𝒑𝒓𝒆 Method r Percentage error
200 0.2 0.05 Bootstrap 0.3 1
200 0.4 0.05 Bootstrap 0.3 0.2
200 0.2 0.05 GHOST 0.3 0.6
200 0.2 0.1 GHOST 0.3 0.2
200 0.2 0.05 Order statistics 0.3 3
200 0.4 0.05 Order statistics 0.3 1
200 0.2 0.1 Order statistics 0.3 0.4
200 0.2 0.05 Split sample 0.3 21.6
200 0.4 0.05 Split sample 0.3 18.6
200 0.2 0.1 Split sample 0.3 7.4
200 0.4 0.1 Split sample 0.3 3.6
200 0.2 0.2 Split sample 0.3 0.6
200 0.4 0.2 Split sample 0.3 0.8
200 0.2 0.05 Bootstrap 0 1.2
200 0.4 0.05 Bootstrap 0 0.4
200 0.2 0.05 GHOST 0 0.8
200 0.2 0.05 Order Statistics 0 2.2
200 0.4 0.05 Order Statistics 0 0.4
200 0.2 0.05 Split Sample 0 16.8
200 0.4 0.05 Split Sample 0 14.8
200 0.2 0.1 Split Sample 0 8.0
200 0.4 0.1 Split Sample 0 4.0
200 0.2 0.2 Split Sample 0 0.4
200 0.4 0.2 Split Sample 0 0.2

Abbreviation: FAR, false alarm rate.
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510 VON STACKELBERG et al.

APPENDIX E: LASSO RESULTS

TABLE E1 Pre-set FAR and obtained FAR values for the different thresholding methods on the ICU dataset.

Model Pre-set FAR FAR Order Statistics FAR Bootstrap FAR GHOST FAR Split Sample
LASSO regression 0.5 0.5009 0.5009 0.5016 0.4801

0.2 0.2024 0.2022 0.2024 0.1941
0.1 0.1026 0.1026 0.1027 0.098
0.05 0.0527 0.0528 0.0527 0.0472
0.01 0.0107 0.0108 0.011 0.0095

Abbreviation: FAR, false alarm rate.

APPENDIX F: ADDITIONAL EXPERIMENTS
We ran a number of additional experiments to study the methods further. Results can be found below.

Computational demand
Differences between SSM, BST, OS, GHOST
We performed an experiment to compare the computational demand between methods. To study this, we generated 50
datasets (𝑛𝑠𝑖𝑚=50) in line with the mechanism described in section 3.2. We then recorded the time until the threshold
was obtained per method, as described in Sections 2.1–2.4 (i.e., not including other steps of the procedure, such as dataset
generation and fitting of the final model). The same aspects of the datasets were varied as in the main study, that is,
correlation, sample size, as well as the average proportion of cases (Section 3.2). In general, we saw that tuning using the
OS basedmethodwas the fastest. This trend could be seen across conditions.We further saw differences in terms of sample
sizes, but no substantial differences with respect to the proportion of cases, pre-set FAR, or correlation. For readability, we
therefore decided to average the results andmainly highlight the influence of the choice of thresholdingmethod as well as
sample size, as can be found below. It should be noted that some functions, for example, the bootstrap are very efficiently
implemented in R, and that logistic regression is not a computationally intensivemodel. This should be taken into account
when looking at the time comparison, especially when considering the results for the GHOSTmethod as implemented for
this paper.With computationally very intensivemodels, it can be expected that amethod like GHOSTwould be faster than
for example, the SSM as it does not require retraining of the model. For the authors’ original implementation of GHOST,
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F IGURE F1 Time comparison (in seconds) between the four thresholding methods. Shown as the average per iteration computed over
𝑛𝑠𝑖𝑚=50 iterations. Note: for readability, we used a logarithmic scale for the y-axis.
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F IGURE F2 Obtained FAR when varying hyperparameters 𝑢 and 𝑤𝑙𝑖𝑚. FAR, false alarm rate.
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F IGURE F3 Time until final threshold was found when varying hyperparameters 𝑢 and 𝑤𝑙𝑖𝑚. Computed per split.

the reader is referred to the original article.14 However, even with optimal implementation of all approaches, we believe
that the order statistics method would still deliver the fastest results, as it does not require resampling or re-training of the
model at all and because the speed does not depend on the sample size.

Influence of hyperparameter choices in SSM
We varied the hyperparameters 𝑢 and 𝑤𝑙𝑖𝑚 to check their influence on the obtained results. We considered all com-
binations of 𝑤𝑙𝑖𝑚 ∈ {0.001, 0.0001, 0.00001, 0.000001, 0.0000001, 0.00000001} and 𝑢 ∈ {100, 200, 500, 1000}, leading to 24
different combinations. Overall, we can see that the choice of hyperparameter combination with the chosen settings does
not show a consistent pattern in terms of influencing results. The parameter combinations lead to roughly similar obtained
FAR, as can be seen due to the small variance in obtained FAR per condition (Figure F2).We also calculated the coefficient
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512 VON STACKELBERG et al.

of variation for the eight different combinations of pre-set FAR and sample size. It ranges from 0.0085 (condition: 𝑛=1000,
pre-set FAR = 0.5) to 0.1761 (condition: 𝑛=200, pre-set FAR = 0.1).
Furthermore, we checked the computational demand of the 24 different hyperparameter combinations outlined in

the beginning of this section. In general, practical differences were small, but it could be seen that with a decrease in
𝑤𝑙𝑖𝑚, the computational time increased (Figure F3). Furthermore, with a larger sample size, the computational time also
increased. Correlation between variables, pre-set FAR, as well as the proportion of cases did not have a significant influ-
ence. Therefore, for reasons associated with readability and brevity, we averaged the results across those conditions per
𝑤𝑙𝑖𝑚∕𝑢 combination in the figure below.
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