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A Robust Phase I Exponentially Weighted
Moving Average Chart for Dispersion

Inez M. Zwetsloot�, Marit Schoonhoven�*† and Ronald J. M. M. Does‘

A Phase I estimator of the dispersion should be efficient under in-control data and robust against contaminations. Most estima-
tion methods proposed in the literature are either efficient or robust against either sustained shifts or scattered disturbances.
In this article, we propose a new estimation method of the dispersion parameter, based on exponentially weighted mov-
ing average charting, which is efficient and robust to both types of unacceptable observations in Phase I. We compare the
method with various existing estimation methods and show that the proposed method has the best overall performance if it
is unknown what type of contaminations are present in Phase I. We also study the effect of the robust estimator from Phase I
on the Phase II exponentially weighted moving average control chart performance. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

Control charts are designed as monitoring tools with the aim of detecting any change in the process characteristic as soon as possible.
Implementation of a control chart usually consists of two phases. The purpose of Phase I is to define the ‘in-control’ state of the process
and to estimate the process parameters. These estimates are used to set up the control limits for Phase II, the prospective monitoring
stage. The Phase I data set can contain unusual observations, which are problematic as they can influence the parameter estimates,
resulting in Phase II control charts with less ability to detect changes in the process characteristic. In our paper, we focus on moni-
toring the process dispersion and consider the problem of estimating the dispersion parameter when the Phase I data may contain
contaminated samples.

One approach to deal with contaminations in Phase I is to use robust point estimators (Jensen et al. 1). There exists a long tradition
of using robust estimators in statistical process control. Some references are Rocke,2 Tatum,3 and Psarakis et al..4 Unfortunately, robust
estimators are usually not very efficient under in-control Phase I data.

A second approach is to construct Phase I charts which identify potentially contaminated samples, remove these from Phase I,
and use the remaining samples to estimate the process parameters. An overview of Phase I charts for univariate data was given by
Chakraborti et al.5 and Jones-Farmer et al.6 In addition, Schoonhoven et al.7 and Schoonhoven and Does8 studied the Shewhart Phase
I chart to obtain a robust estimator for the dispersion. Jones-Farmer and Champ9 and Capizzi and Masarotto10 studied non-parametric
Phase I charts for robustness against disturbances in Phase I.

A third approach is to use changepoint methods. These methods are especially suited to detecting sustained changes in the process
parameters. There is a long tradition of testing for sustained shifts in Phase I; for a literature overview see Amiri and Allahyari.11

The optimal choice of estimation method requires knowledge of the type of contaminations. Typically, Phase I charts are suit-
able when outliers are present in Phase I and changepoint methods are suitable if sustained shifts occur. The aim of our paper is to
introduce a new Phase I estimation methodology for the dispersion parameter which provides reliable estimates regardless of the pat-
tern of contaminations in Phase I. This is achieved by using an exponentially weighted moving average (EWMA) chart in Phase I. The
EWMA control chart is described in Section 2. The new estimation technique and some competing methods mentioned above are
described in Section 3. Section 4 compares their performance in terms of efficiency for uncontaminated and various contaminated
data sets. In Section 5, we evaluate the effect of the proposed estimators on the Phase II EWMA control chart and Section 6 offers some
concluding comments.
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2. The EWMA dispersion control chart

The EWMA control chart, originally proposed by Roberts,12 can detect small shifts in the process parameters in Phase II more quickly
than the traditional Shewhart control chart, by taking into account the information of the current samples as well as the history of
the process. The EWMA control chart for location has been thoroughly studied in the literature, some references are Crowder,13 Lucas
and Saccucci,14 and Jones et al.15 In addition to location EWMA control charts, considerable research has been done to develop EWMA
control charts for monitoring process dispersion. Two categories of EWMA dispersion control chart can be distinguished. EWMA control
charts in the first category are based on a dispersion statistic, like the sample variance S2 or sample standard deviation S (e.g. Ng and
Case16). EWMA control charts in the second category, are based on transformations of these statistics, such as log.S2/, to correct for the
skewness of S and S2 (e.g. Shu and Jiang17).

Knoth18 studied these competing statistics and compared EWMA dispersion control charts based on R (the range), S2, S, and log.S2/

and concluded that “the best performance in terms of the average run length profile is given by the S2 and S EWMA control charts". In
our paper, we therefore consider an EWMA dispersion control chart based on S. We use S rather than S2 because in practice the process
dispersion is most often evaluated in terms of S.

The EWMA statistic is defined as Wt D .1 � �/Wt�1 C �St , with St the sample standard deviation of sample t, and � a smoothing
constant satisfying 0 < � � 1. We set W0 D EŒSt� D c4.n/� , where n is the sample size and c4.n/ the bias correcting coefficient

c4.n/ D

r
2

n � 1

�.n=2/

�..n � 1/=2/
.

Under the assumption of independently, identically, and normally distributed observations, the mean and variance of Wt are EŒWt� D

c4.n/� and VŒWt� D �2
�
1 � c4.n/2

�
�

2��

�
1 � .1 � �/2t

�
. When monitoring dispersion, an increase in the dispersion indicates some

special cause of variation that should be detected and removed, while a decrease in dispersion indicates a process improvement. As
we are most interested in detecting increases, we use a one-sided EWMA control chart. Therefor, we reset the EWMA statistic to its
expected value whenever it drops below

Wt D maxŒ .1 � �/Wt�1 C �St , c4.n/� �.

The EWMA control chart gives an out-of-control signal whenever Wt exceeds the upper control limit UCLt , where

UCLt D c4.n/� C L�
p
.1 � c4.n/2/

r
�

2 � �

p
1 � .1 � �/2t .

Here, L is a positive coefficient which, together with �, determines the in-control performance of the EWMA dispersion control chart.
We use the so called time-varying control limits to enhance the charts sensitivity to shifts in the first samples (cf. Steiner19).

In practice, � is unknown and has to be estimated. We denote the estimate of � , which is based on the Phase I data, by O� . Many
authors have studied the design of control charts based on estimated parameters, see for example Psarakis et al.4 and Saleh et al.20 For
the effect of estimation on the EWMA control chart see Jones et al.15 and Jones.21

3. Phase I estimators of dispersion

Below, we describe various estimation methods that can be used within Phase I of the control charting process to obtain an estimate
of � . We consider efficient and robust point estimators, a changepoint method and we present the new estimation method based on
EWMA Phase I control charting.

Let Xit , with i D 1, 2, ..., n and t D 1, 2, ..., k, be the Phase I observations of the process characteristic. Assume Xit to be independent
N.�, �2/ distributed with mean � and standard deviation � assumed stable if the process is in control. We set k D 50 and n D 5.

3.1. Point estimators

Traditionally, � is estimated with the pooled sample standard deviation:

Sp D
1

c4.k.n � 1/C 1/

vuut1

k

kX
tD1

S2
t .

Mahmoud et al.22 showed that this estimator is more efficient than the mean of the sample standard deviations or the mean of the
sample ranges when data are normally distributed. The pooled sample standard deviation provides a basis for comparison as it is the
most efficient unbiased estimator under uncontaminated normal data.
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Next, we include two robust point estimators in our comparison. The first is based on the sample interquartile ranges, which are
defined as IQRt D X.b/t � X.a/t , where X.o/t denotes the o-ordered value in sample t, a D dn=4e, and b D n� aC 1. The ceiling function
dze denotes the smallest integer not less than z. We consider a trimmed version of the mean of the sample IQRs as proposed by Rocke2;

IQR˛ D
1

k � 2dk˛e

k�dk˛eX
oDdk˛eC1

IQR.o/,

where IQR.o/ denotes the o-th ordered value of the samples IQRs. We take ˛ D 20%. An unbiased estimate of � is given by dividing
IQR20 by 0.9261 (obtained through 100,000 Monte Carlo simulations).

The second robust point estimator we consider is an estimator proposed by Tatum.3 It is based on a variant of the biweight A
estimator. First, it centers each observation on its sample median Mt , creating residuals eit D Xit �Mt . If n is odd, each sample contains
one residual equal to zero, which is dropped. The resulting n0k residuals, with n0 D n � 1 when n is odd and n0 D n if n is even, are
weighted by uit D

ht eit
cM� , where M� is the median of the absolute values of the n0k residuals,

ht D

8<
:

1 Et � 4.5,
Et � 3.5 4.5 < Et � 7.5,
c Et > 7.5,

Et D IQRt=M�, and c is a tuning constant. To estimate � , only the residuals that are small, i.e. for which juitj � 1, are used

S� D
n0k

p
n0k � 1

qPk
tD1

P
i:juitj<1 e2

it.1 � u2
it/

4

j
Pk

tD1

P
i:juitj<1.1 � u2

it/.1 � 5u2
it/j

.

Tatum3 showed that for c D 7 the estimator is robust against various contaminations. An unbiased estimator of � is given by
S�=d.n, k, c/, where d.5, 50, 7/ D 1.0677 (obtained through 100,000 Monte Carlo simulations). The resulting estimator is denoted by
D7 as in Tatum.3

3.2. Changepoint method

Changepoint methods are based on the log likelihood of the observations in Phase I. Sullivan and Woodall23 showed that the change-
point method outperforms the Shewhart chart in detecting sustained shifts in Phase I. We apply a modified version of the estimator
they proposed.

Let O�2
j:l be the maximum likelihood estimator of the variance of samples j through l

O�2
j:l D

1

n.l � jC 1/

lX
tDj

nX
iD1

.Xit � Xj:l/
2,

where Xj:l is the overall mean of all observations in samples j through l. To test for the existence of a sustained shift at sample 	 , Sullivan
and Woodall23 computed the likelihood ratio statistic as LRTŒ	 � D nk ln

�
O�2

1:k

�
�n	 ln

�
O�2

1:�

�
�n.k� 	/ ln

�
O�2
�C1:k

�
. Because the expected

value of LRT.	/ varies with 	 , we first standardize LRT.	/ by the expected value under normally distributed data E.LRT.	//. These
expected values were determined through 100,000 simulations and are presented in Table I. The standardized values are denoted by
LRT 0.	/. A chart can be constructed by plotting LRT 0.	/ versus 	 and an out-of-control signal occurs if LRT 0.	/ exceeds the upper control
limit UCLCP . Every out-of-control signal indicates a possible sustained shift in the process, i.e. the process parameters in samples 1, .., 	
are different from samples 	 C 1, .., k. When multiple signals are given, we set the estimated changepoint ( O	 ) equal to the 	 for which
LRT 0.	/ is largest. If there is no out-of-control signal we set O	 D k.

To determine UCLCP , we have set the overall in-control false alarm rate - the number of observations deemed out of control when all
data are in fact in control - at 1 percent. Using 100,000 simulations, we found that UCLCP D 5.92.

When the changepoint O	 is estimated, we can determine which samples are out of control. In practice, knowledge of the process
would be used to determine whether the data before or after the estimated O	 are in control. In our paper, we use the following decision
rule as a surrogate for process knowledge: ‘the majority of the samples represent the in-control process.’ This implies that if O	 � k=2
we delete samples 1 up to O	 from Phase I. If O	 > k=2 we delete samples O	 C 1 up to k from Phase I. The remaining samples are used
to compute the pooled standard deviation, yielding an estimator of � based on changepoint analysis, which we denote by CP. This

Table I. E.LRT.	// for different values of 	
	 2 3 4 5 6 7 8 9-10 11-17 18-32
E.LRT.	// 2.21 2.14 2.10 2.08 2.07 2.06 2.05 2.04 2.03 2.02

	 33-39 40-41 42 43 44 45 46 47 48
E.LRT.	// 2.03 2.04 2.05 2.06 2.07 2.08 2.10 2.13 2.21

Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 989–999

9
9

1



I. M. ZWETSLOOT, M. SCHOONHOVEN AND R. J. M. M. DOES

Table II. Phase I dispersion estimators based on EWMA charts
Estimator Description LI

sS0.5 Phase I EWMA screening estimator with O�I D Sp and �I D 0.5 2.553
sIQR0.3 Phase I EWMA screening estimator with O�I D IQR20 and �I D 0.3 2.970
sIQR0.5 Phase I EWMA screening estimator with O�I D IQR20 and �I D 0.5 2.900
sIQR1 Phase I EWMA screening estimator with O�I D IQR20 and �I D 1 2.755

changepoint method is designed to detect a single changepoint O	 and is at a disadvantage if multiple step changes occur in Phase I.
Alternative changepoint methods can be designed based on recursive testing for step changes.

3.3. The proposed estimation method

In this section, we propose an estimation method for the dispersion based on EWMA charting in Phase I. The new method provides
a robust estimate of the dispersion when it is unknown what type of contaminations are present in Phase I. The EWMA chart can be
viewed as a compromise between the Shewhart chart and methods with a memory like the CUSUM chart and the changepoint method.
The proposed estimation method consists of the following steps:

1. Use all observations in Phase I and compute an initial (robust) estimate of the dispersion. This estimate is denoted by O�I. Note that
the subscript ‘I’ denotes that the parameter is associated with Phase I charting.

2. Set up a Phase I EWMA chart, using O�I. This chart plots the EWMA statistic Wt D maxŒ.1 � �I/Wt�1 C �ISt , c4.n/ O�I� together with

the upper control limit bUCLt D c4.n/ O�I C LI O�I

p
.1 � c4.n/2/

q
�I

2��I

p
1 � .1 � �I/2t , and with W0 D c4.n/ O�I.

3. Delete from Phase I all samples for which the corresponding EWMA statistic gives an out-of-control signal.
4. Compute an efficient unbiased estimator of the standard deviation, Sp, based on the remaining samples.

The resulting estimator is denoted by s O�I,�I , where ‘s’ indicates that we use a screening Phase I chart, O�I stands for the initial dispersion
estimator chosen in step 1 and the subscript �I denotes the value selected for the smoothing constant in step 2. To operationalize this
screening estimator, we need to select an estimator for O�I and values for �I and LI.

In step 1, we select the efficient estimator Sp and the robust estimator IQR20 as initial estimator. This provides a comparison with an
efficient estimator when no contaminations are present and with a robust estimator when contaminations occur.

In step 2, small values of �I enable quick detection of sustained shifts, because we use the memory property of the EWMA chart,
while larger values of �I enables quick detection of outliers more effectively. To assess the trade-off between high and low values for
�I, we set �I equal to 0.3, 0.5 and 1. For �I D 1, the chart is equivalent to the Phase I Shewhart chart.

We obtained values for LI by setting the false alarm rate in Phase I at 1 percent, thereby following Chakraborti et al.5 Table II
gives an overview of the screening estimators considered and the corresponding values of LI (obtained through 100,000 Monte
Carlo simulations).

4. Comparison phase I estimation methods

In this section, we evaluate the performance of the proposed dispersion estimation methods when the Phase I data are in control as
well as when the Phase I data contain contaminations. Recall that the Phase I data are N.�, �2/ distributed if the process is in control.
Without loss of generality, we set � D 0 and � D 1. In Section 4.1 we describe the data scenarios considered in Phase I. In Section 4.2
we define the performance measures, while in Section 4.3 we outline the simulation procedure. Section 4.4 contains the Phase I results.

4.1. Contamination scenarios

Many different contaminations scenarios are studied in the literature. In our paper, we distinguish between scattered and sustained
special causes of variation. We evaluate two scattered scenarios - localized and diffuse - based on Tatum3 and Schoonhoven and Does8

and two sustained shift scenarios - single and multiple step shifts - based on Chen and Elsayed24 and Amiri and Allahyari.11 These four
scenarios were also used by Zwetsloot et al.25 except that they applied them to the location parameter.

1. A model with localized variance disturbances in which all observations in a sample have a probability 1 � p of being drawn from
the N.0, 1/ distribution and a probability p of being drawn from the N

�
0, ı2

I

�
distribution, with ıI D 1, 1.5, .., 3.5, 4.

2. A model with diffuse variance disturbances in which each observation is drawn from the N.0, 1/ distribution and has a probability
p of having a multiple of a 
2

1 variable added to it, with multiplier �I, with �I D 0, 0.5, 1, .., 2.5, 3.
3. A model with a single step shift in the variance. All observations in the last dp � ke Phase I samples, are drawn from the N.0, ı2

I /

distribution, with ıI D 1, 1.5, .., 3.5, 4.
4. A model with multiple step shifts in the variance. At each time point, the sample has a probability op q of being the first of dp � ke

consecutive samples drawn from the N.0, ı2
I / distribution, with ıI D 1, 1.5, .., 3.5, 4. After any such step shift, each sample again

has a probability of q of being the start of another step shift. If a shift occurs at the end of the Phase I data set, say at k � 1, only
samples k � 1 and k will be contaminated, even if the length of the shift (dp � ke) should be longer.

9
9

2

Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 989–999



I. M. ZWETSLOOT, M. SCHOONHOVEN AND R. J. M. M. DOES

Table III. Phase I contamination scenarios
Scenario Prob. Description Shift size

In-control 0 All observations from N.0, 1/ n/a
Localized 0.05 95 � 5 random mixture of N.0, 1/ and N.0, ı2

I / ıI D 1.25, 1.5, ..., 4
0.10 90 � 10 random mixture of N.0, 1/ and N.0, ı2

I / ıI D 1.25, 1.5, ..., 4
Diffuse 0.05 95 � 5 random mixture of N.0, 1/ and N.0, 1/C �I


2
1 �I D 0.25, 0.5, ..., 3

0.10 90 � 10 random mixture of N.0, 1/ and N.0, 1/C �I

2
1 �I D 0.25, 0.5, ..., 3

Single step 0.05 Samples 1- 47 are N.0, 1/ and samples 48-50 are N.0, ı2
I / ıI D 1.25, 1.5, ..., 4

0.10 Samples 1- 45 are N.0, 1/ and samples 46-50 are N.0, ı2
I / ıI D 1.25, 1.5, ..., 4

Multiple steps 0.05 Shifts of length 3 from N.0, ıI/ occurring with probability 0.018 ıI D 1.25, 1.5, ..., 4
0.10 Shifts of length 5 from N.0, ıI/ occurring with probability 0.023 ıI D 1.25, 1.5, ..., 4

All four scenarios are modeled such that they have an (approximate) contamination rate of p� 100 percent. We study both p D 0.05
and p D 0.1, and set q D 0.018 and q D 0.023 respectively in the multiple shift scenario. These values for q were determined through
100,000 Monte Carlo simulations. An overview of the contamination scenarios is provided in Table III.

4.2. Performance measures

One of the requirements of Phase I is to deliver an accurate parameter estimate of � , even if Phase I contains contaminated obser-
vations. In order to evaluate the accuracy of the dispersion estimators, we determine their mean squared error (MSE), which is
computed as

MSE D
1

R

RX
rD1

�
O� r � �

�

�2

D
1

R

RX
rD1

. O� r � 1/2.

Here O� r denotes one of the proposed estimators presented in Section 3.1, calculated in the rth simulation run, and R is the total number
of simulation runs.

The proposed estimators are also evaluated with two additional quality characteristics: the true alarm percentage (TAP) and the
false alarm percentage (FAP). These additional performance measures reflect the ability of the screening estimators to detect unac-
ceptable observations without triggering false alarms for acceptable observations. Related measures were presented by Fraker et al.,26

Chakraborti et al.,5 and Frisén.27 The TAP and FAP are calculated as

TAP D
1

R

RX
rD1

.#correctly identified unacceptable observations/r

.#unacceptable observations/r
� 100%

and

FAP D
1

R

RX
rD1

.#incorrectly identified unacceptable observations/r

.#acceptable observations/r
� 100%,

where the superscript r denotes the r-th simulation run.

4.3. Simulation procedure

A Monte Carlo simulation study was conducted. We drew R Phase I data consisting of k D 50 samples of size n D 5, for each of
the four contamination scenarios, each contamination rate, and each value of ıI or �I (see Table III). The proposed eight dispersion
estimators were calculated for each simulation run, and the three performance measures were computed based on the R runs. The
relative simulation error is defined as the standard deviation of the MSE expressed as a percentage of the MSE. We set the value of R
equal to 100,000, so that this error was never larger than 0.5%. The MSE results are presented in Figures 1 through 4 and the TAP and
FAP metrics are shown in Table IV.

4.4. Phase I results

First consider the situation when the Phase I data are in control. In Table IV, the column corresponding to FAP and ıI D 1 or �I D 0
shows the false alarm percentage if the Phase I data are in control. This percentage was set equal to 1% for all estimators. In Figures 1
through 4, the y-intercept represents the MSE of the estimators based on uncontaminated Phase I data. As expected, the pooled
sample standard deviation Sp shows the smallest MSE followed by the CP estimator, the screening estimators, and D7. The robust point
estimator IQR20 has a very large MSE.

Furthermore, for uncontaminated Phase I data, the four screening estimators show an approximately equal MSE level. This implies
that, from the perspective of efficiency under uncontaminated Phase I data, it does not matter whether we use an efficient (sS0.5) or

Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 989–999
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Figure 1. Localized shifts in Phase I

Figure 2. Diffuse shifts in Phase I

Figure 3. A single step shift in Phase I

robust (sIQR0.5) initial estimator for O�I. Furthermore, it also does not matter from the perspective of efficiency under uncontaminated
Phase I data which �I we use.

Next, we consider the situation when contaminations are present in the Phase I data (ıI > 1 or �I > 0). Overall, the EWMA-based
methods perform reasonably well for any type of contamination, while the point estimator Sp is most sensitive to contaminations.

9
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Figure 4. Multiple step shifts in Phase I

When localized or diffuse shifts are present in Phase I, the screening estimators based on a robust initial estimator show the lowest
MSE over all shifts sizes (see Figures 1 and 2). For the 10% contamination scenario, the screening estimators show diverging MSE levels,
with sIQR1 and sIQR0.5 having the lowest MSE levels. The difference between 5% and 10% contamination rates is also shown in Table IV.
The FAP of the estimator sIQR0.3 is the highest among the screening estimators. This is due to the low value of �I, suggesting that it is
undesirable to set �I too low.

When a single step shift is present in Phase I (Figure 3), the estimator CP shows a low MSE, as was to be expected, because CP is
specifically designed for sustained shifts. However, for small shift sizes (1 < ıI < 2), its MSE is higher than the MSE of the screening
estimators. The TAP and FAP values show the same pattern: CP has the highest TAP followed by sIQR0.5 and it has the lowest FAP for
both a 5% and 10% contamination rate.

When multiple step shifts are present in Phase I (Figure 4), the screening estimators based on IQR20 have the lowest MSE. For a
5% contamination rate, it does not really matter which �I we select. However, if 10% of the observations are contaminated and show
multiple step shifts, the estimator sIQR0.5 shows the best MSE performance. It is able to detect most of the contaminated samples with
TAP values up to 94.7%, and incorrectly deletes no more than 3% of the observations.

Overall, the best estimator is the screening estimator based on IQR20 and �I D 0.5. Irrespective of the contaminations in Phase I, it
always has low MSE levels.

5. Application to the phase II EWMA control chart

Phase I estimation methods are used to design the Phase II control chart. In this section, we consider the effect of estimating � on the
EWMA control chart in Phase II when the Phase I data may or may not be contaminated.

Let Yit , with i D 1, .., n and t D 1, 2, .., be the Phase II data which are independently and identically N
�
�, ı2

II�
2
�

distributed, where ıII

is a constant and the index ‘II’ indicates Phase II data. If ıII D 1, the data are in control and, if ıII > 1, the data are out of control. We only
consider ıII � 1 as we study the one-sided EWMA dispersion control chart. We set � D 0 and � D 1 without loss of generality.

5.1. Design of the phase II EWMA control chart

The Phase II EWMA control chart consists of the EWMA statistic

Wt D maxŒ .1 � �II/Wt�1 C �IISt , c4.n/ O� �, (1)

with W0 D c4.n/ O� , and upper control limit

bUCLt D c4.n/ O� C LII O�

s
�II

2 � �II

p
1 � .1 � �II/2t

p
.1 � c4.n/2/, (2)

where O� is the Phase I estimate of � . We consider the eight estimation methods described in Section 3.1, which results in eight Phase
II EWMA control charts. Furthermore, �II is set equal to 0.3. This value differs from the value of �I (0.5) chosen in Phase I, as Phase
I is used for exploratory purposes. The values of LII, presented in Table V, were determined such that all EWMA control charts have
an approximate in-control average run length performance of 200, whereby we followed the design procedure originally proposed
by Jones21.
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Table IV. True Alarm Percentage (TAP) and False Alarm Percentage (FAP)
Scenario perc. O� TAP FAP

ıI ıI

2 3 4 1 2 3 4

Localized 5 CP 9.6 29.8 39.4 1.0 3.9 13.3 20.0
sS0.5 39.0 68.3 80.1 1.0 0.8 1.1 1.4
sIQR0.3 31.3 69.0 86.5 1.0 1.8 4.4 7.5
sIQR0.5 38.6 74.9 89.5 1.0 1.2 2.6 4.3
sIQR1 43.1 77.7 90.8 1.0 0.7 0.7 0.6

10 CP 10.7 26.4 30.0 1.0 6.4 19.0 24.5
sS0.5 33.0 57.7 68.4 1.0 0.6 0.8 1.1
sIQR0.3 30.1 68.0 86.0 1.0 2.3 7.1 12.7
sIQR0.5 36.4 73.0 88.4 1.0 1.3 3.7 6.8
sIQR1 39.9 74.8 89.1 1.0 0.5 0.4 0.4

�I �I

1 2 3 0 1 2 3

Diffuse 5 CP 5.5 18.1 25.0 1.0 4.4 14.8 21.2
sS0.5 7.7 16.5 21.5 1.0 2.0 3.7 4.8
sIQR0.3 7.8 23.0 35.7 1.0 3.0 8.8 15.0
sIQR0.5 8.5 22.7 34.0 1.0 2.6 6.6 10.6
sIQR1 8.7 21.4 30.9 1.0 2.2 4.2 5.9

10 CP 7.9 21.6 25.9 1.0 6.9 20.1 24.9
sS0.5 7.4 14.6 17.9 1.0 2.6 5.0 6.1
sIQR0.3 9.4 28.8 44.7 1.0 4.8 15.7 26.8
sIQR0.5 9.6 26.2 39.5 1.0 4.0 11.4 18.7
sIQR1 9.2 22.7 32.7 1.0 3.2 7.1 10.1

ıI ıI

2 3 4 1 2 3 4

Single step 5 CP 74.4 97.9 99.5 0.9 1.4 0.3 0.1
sS0.5 57.4 85.6 92.6 1.0 0.3 0.1 0.0
sIQR0.3 52.5 85.2 94.2 1.0 0.6 0.4 0.4
sIQR0.5 55.0 87.6 95.6 1.0 0.6 0.5 0.5
sIQR1 43.4 78.3 91.1 1.0 0.7 0.6 0.6

10 CP 90.0 98.6 99.5 0.9 1.1 0.2 0.1
sS0.5 58.6 85.0 91.4 1.0 0.1 0.0 0.0
sIQR0.3 62.1 89.6 95.9 1.0 0.4 0.2 0.2
sIQR0.5 59.6 90.6 96.9 1.0 0.4 0.3 0.3
sIQR1 41.1 76.2 89.9 1.0 0.5 0.4 0.4

Multiple steps 5 CP 29.7 57.3 62.4 1.0 6.2 13.6 15.0
sS0.5 50.2 77.0 85.0 1.0 0.8 1.0 1.3
sIQR0.3 49.8 83.7 93.4 1.0 1.9 3.9 5.5
sIQR0.5 51.7 85.7 94.8 1.0 1.1 2.0 2.8
sIQR1 40.8 75.7 89.5 1.0 0.8 0.7 0.7

10 CP 39.5 53.3 53.7 1.0 11.5 17.0 17.4
sS0.5 45.3 69.1 76.5 1.0 0.6 0.8 0.9
sIQR0.3 54.8 85.9 94.0 1.0 2.1 4.6 6.4
sIQR0.5 51.7 85.9 94.7 1.0 1.0 1.9 2.8
sIQR1 35.4 69.6 85.2 1.0 0.6 0.5 0.5

5.2. Performance measures

The performance of a control chart in Phase II is usually expressed in terms of the distribution function of the run length (RL) where RL
is a random variable that represents the number of samples before a signal occurs, and a realization of RL will be denoted by rl.

For control charts with estimated parameters, a distinction is made between the conditional and unconditional run length distribu-
tion. The conditional distribution is the distribution of RL given the Phase I parameter estimate O� . This reflects that the run length has
a different distribution for each value of O� . Similarly, percentiles and moments of the conditional distribution take different values for
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Table V. LII for the Phase II EWMA control chart based on O�
O� : Sp IQR20 D7 CP sS0.5 sIQR0.3 sIQR0.5 sIQR1

LII : 2.607 2.210 2.570 2.580 2.680 2.650 2.660 2.677

Table VI. Performance of the Phase II EWMA control chart when 5% of the data in Phase I are contaminated
Phase I ARL and percentiles of the unconditional run length distribution

In-control Phase II data Out-of-control Phase II data

ıII D 1 ıII D 1.1 ıII D 1.2 ıII D 1.4

Scenario O� 10th 50th 90th ARL 10th 50th 90th ARL 10th 50th 90th ARL 10th 50th 90th ARL
In-control Sp 10 86 467 201 3 23 100 42 1 9 36 15 0 3 11 5

D7 9 79 458 200 3 21 98 42 1 9 35 15 0 3 11 5
IQR20 3 36 348 207 1 12 79 39 0 6 29 13 0 2 9 4
CP 10 84 461 204 3 22 99 42 1 9 36 15 0 3 11 5
sS0.5 10 82 469 204 3 22 99 42 1 9 35 15 0 3 11 5
sIQR0.3 10 82 468 202 3 22 99 42 1 9 36 15 0 3 11 5
sIQR0.5 10 82 471 204 3 22 99 42 1 9 35 15 0 3 11 5
sIQR1 9 79 460 200 3 21 97 41 1 9 35 15 0 3 11 5

Localized Sp 42 673 22854 4881 9 104 1745 1101 3 30 285 213 1 7 33 17
(ıI D 2.5) D7 15 139 1063 515 4 32 177 80 2 12 54 23 0 4 14 6

IQR20 5 60 723 458 2 18 133 76 1 8 43 21 0 3 11 5
CP 23 332 15809 3895 6 62 1273 1283 2 20 222 394 0 5 29 32
sS0.5 14 124 898 446 4 30 155 72 2 11 49 22 0 4 13 6
sIQR0.3 12 117 954 506 4 29 161 79 1 11 50 22 0 4 13 6
sIQR0.5 12 106 771 382 3 27 138 63 1 11 45 20 0 3 12 5
sIQR1 12 103 707 335 3 26 130 58 1 10 43 19 0 3 12 5

Diffuse Sp 48 833 30000 6649 10 125 5664 2599 4 35 679 1020 1 7 53 168
(�I D 1.5) D7 14 131 886 406 4 31 158 68 2 12 50 21 0 4 13 6

IQR20 5 52 580 345 2 16 113 59 1 7 38 17 0 3 11 4
CP 25 347 14544 3800 6 65 1210 1515 2 21 217 688 1 5 29 157
sS0.5 18 170 1336 663 5 37 206 98 2 14 61 27 0 4 15 6
sIQR0.3 14 141 1119 550 4 33 184 84 2 12 56 24 0 4 14 6
sIQR0.5 13 130 976 466 4 31 166 74 2 12 51 22 0 4 13 6
sIQR1 14 128 913 429 4 30 159 70 2 12 50 22 0 4 13 6

Single step Sp 95 1288 19996 5278 16 167 1602 838 5 42 273 138 1 8 34 15
(ıI D 2.5) D7 17 157 1132 513 4 35 186 80 2 13 56 24 0 4 14 6

IQR20 5 66 794 481 2 19 143 78 1 8 46 21 0 3 12 5
CP 10 82 479 223 3 22 100 46 1 9 36 16 0 3 11 5
sS0.5 13 115 734 322 4 28 134 58 2 11 44 19 0 4 12 5
sIQR0.3 12 111 763 344 4 27 137 59 1 11 45 19 0 4 12 5
sIQR0.5 12 102 679 307 3 26 126 55 1 10 42 18 0 3 12 5
sIQR1 12 108 747 338 4 27 135 59 1 11 44 19 0 3 12 5

Multiple steps Sp 25 494 30000 6280 7 83 4611 2231 3 26 579 643 1 6 47 42
(ıI D 2.5) D7 14 138 1353 778 4 33 207 121 2 12 59 30 0 4 14 6

IQR20 5 60 840 596 2 18 150 100 1 8 46 25 0 3 12 5
CP 13 140 23776 3708 4 34 1735 2047 2 13 257 1051 0 4 29 178
sS0.5 12 111 840 498 4 28 147 88 1 11 47 24 0 4 13 6
sIQR0.3 11 101 745 413 3 26 136 71 1 10 44 21 0 3 12 5
sIQR0.5 11 96 669 346 3 25 126 61 1 10 42 19 0 3 12 5
sIQR1 11 105 776 425 3 26 140 73 1 11 45 21 0 3 12 5

each value of O� . We denote the conditional distribution by FRLj†.rlj O�/ D P ŒRL � rlj O��. Here, O� is a realization of the random variable
†, which is a function (one of the eight proposed estimators) of the random Phase I data set. In order to evaluate the overall behavior
of the Phase II EWMA control chart, we consider the unconditional distribution of the run length FRL.rl/, which takes account of the
variability of O� , i.e., FRL.rl/ D

R1
0 FRLj†.rlj O�/f†. O�/d O� .

Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 989–999
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A common measure of the performance of a control chart is the expected value of the RL, the average run length (ARL). It is desirable
to have a large ARL when the process is in control and a small ARL when the process is out of control. We evaluate the ARL as well as the
10th, 50th, and 90th percentiles of the unconditional run length distribution as performance measures of the Phase II EWMA control
chart for dispersion.

5.3. Simulation procedure

A Monte Carlo simulation study was conducted to evaluate the unconditional run length distribution of the Phase II EWMA dispersion
control chart based on the eight Phase I dispersion estimators presented in Section 3. We used the following simulation procedure:
first k D 50 samples of size n D 5 are drawn from N.0, 1/. We calculated O� using the eight proposed estimators. These estimates were
used to set up eight Phase II EWMA control charts according to equations 1 and 2. Next, observations from N

�
0, ı2

II

�
are drawn until the

associated Wt falls above the control limit. The corresponding run length equals t� 1. The calculations are made for ıII D 1, 1.1, 1.2, 1.4.
The entire procedure was repeated for R D 100, 000 simulation runs. This gives 100,000 realizations of fRL.rl/ for each value of ıII and
for each estimator O� . The unconditional ARL is computed by averaging over all rls and the percentiles are taken by sorting the 100,000
run lengths and selecting the 10, 000th, the average of the 50, 000th and 50, 001st, and the 90, 000th run lengths.

This whole procedure was repeated for each of the four Phase I contamination scenarios, where we set ıI D 2.5 or �I D 1.5, and for
simplicity, we only considered the Phase I scenarios with a 5% contamination rate. The results are presented in Table VI. The first part of
the table shows the performance of the EWMA control charts when the Phase I data are in control, followed by the results when Phase
I contains out-of-control observations as defined in the four Phase I contamination scenarios.

For computational convenience and speed, we truncated the simulation at rl D 30, 000 and set a run length greater than 30,000
equal to this value. These values are therefore an underestimate of the actual ARL or percentile.

5.4. Phase II results

First, consider the situation where the Phase I data are uncontaminated (first part of Table VI). A general observation is that under
in-control data the EWMA control charts show similar performance across all estimators (i.e. they have in-control ARLs of around 200
and they show similar out-of-control ARLs and percentiles). One exception is the EWMA control chart based on IQR20, which has the
worst performance.

Next, consider the situation where the Phase I data are contaminated. A general effect of contamination in Phase I is an increased
in-control ARL as well as an increased out-of-control ARL. This is of course undesirable. The control chart based on the traditional
estimator Sp is less effective if any type of contamination is present in Phase I. The control chart based on CP shows good performance
for the single step shift scenario but does not work very well for the other contamination scenarios. The control chart based on sIQR1

shows the best performance for localized and diffuse shifts. The estimator sIQR0.5 has the second-best performance for these scenarios.
If there are multiple step shifts present, the best performance is given by the control chart based on sIQR0.5.

To summarize, the type of disturbance and estimation methods used in Phase I strongly determines the performance of the Phase
II EWMA control chart. When it is unknown which type of contaminations are present in Phase I, we recommend the use of the EWMA
chart in Phase I based on a robust initial estimator and �I D 0.5 (sIQR0.5).

6. Concluding remarks

In this article, we have proposed a new Phase I estimation method for the dispersion of a process. This method is based on Phase I
EWMA charting and provides an efficient estimator of the dispersion for in-control Phase I data and a robust estimate of the disper-
sion if contaminations are present in Phase I. We have compared this new method with several estimation methods from the literature,
in terms of their accuracy (MSE) and the percentage of successfully identified samples (TAP and FAP). Moreover, we have investi-
gated the impact of data contaminations in Phase I on the performance of the Phase II EWMA control chart based on the various
dispersion estimators.

In our study we show that the existing Phase I estimation methods provide robust estimates for specific patterns of disturbances in
Phase I. In particular, estimators based on Phase I Shewhart charts are robust primarily to outliers in Phase I and changepoint methods
are robust to sustained shifts in Phase I. The new method, based on Phase I EWMA charting, shows MSE levels which are comparable to
the MSE of the Phase I Shewhart chart estimator if outliers are present and which are also comparable to the MSE of the changepoint
methods if sustained shifts are present. Thus, the proposed method provides a robust estimate for any pattern of disturbances in
Phase I.

The choice of the smoothing constant of Phase I EWMA chart is important as it influences robustness against the various patterns
of contaminations. By studying the TAP and FAP, we have discovered that for small values of � (0.3) the estimator deletes too many in-
control samples from Phase I and for larger values of� (1) the estimator does not identify sustained shifts in Phase I optimally. Therefore,
we recommend estimating the process dispersion by means of a Phase I EWMA chart with a smoothing constant of 0.5.

Furthermore, we recommend the use of a two-step procedure, namely a robust estimator to estimate the dispersion and con-
struct the Phase I chart, and an efficient estimator for post-screening estimation. For practitioners, the Phase I EWMA chart is easy
to implement.
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