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Several control charts for individual observations are compared. Traditional ones
are the well-known Shewhart individuals control charts based on moving ranges.
Alternative ones are non-parametric control charts based on empirical quantiles, on
kernel estimators, and on extreme-value theory. Their in-control and out-of-control
performance are studied by simulation combined with computation. It turns out
that the alternative control charts are not only quite robust against deviations from
normality but also perform reasonably well under normality of the observations.
The performance of the Empirical Quantile control chart is excellent for all
distributions considered, if the Phase I sample is sufficiently large. Copyright c© 2003
John Wiley & Sons, Ltd.
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INTRODUCTION

S
ince Shewhart originated the concept of the control chart in the early 1920s, it has become a powerful tool
in statistical process control1. Shewhart-type control charts consist of a graph with time on the horizontal
axis and a control characteristic (individual measurements or statistics such as mean or range) on the

vertical axis. Control limits drawn provide easy checks on the stability of the process, that is, they signal the
presence of special causes. The charts are usually constructed using 20–30 initial samples of about five items
each, which in general are supposed to arise from purely random sampling. A treatment of statistical aspects of
control charts in this typical textbook situation was given by Does and Schriever2. Up-to-date books on statistical
process control also incorporating more advanced methods based on practice, are Wheeler3, Quesenberry4,
Does et al.5, and Montgomery6.

In practice, situations frequently arise that require a charting procedure for individual measurements.
Charting of individual observations has received extensive attention in the literature. In Roes et al.7 and
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Reynolds and Stoumbos8,9 statistical aspects of charts of individual observations have been studied. Usually, the
underlying distribution function is assumed to be normal, for the evaluation of the statistical performance.
Nevertheless, there has always been some concern about this normality assumption. Especially when individual
measurements are used, the normality assumption is risky. In Borror et al.10 an EWMA control chart is
designed that is robust to non-normality. In Stoumbos and Reynolds11 the effects of both non-normality and
autocorrelation on the performance of various individual control charts are studied. In a recent paper, Woodall
and Montgomery12 stated that

There would appear to be an increasing role for non-parametric methods, particularly as data
availability increases. Abundant data would cause the loss of power associated with non-parametric
methods to become less of an issue

(see also Stoumbos et al.13). If large data sets are available, an attractive approach to parametric statistical
inference would be to first use these large data sets to study distributional form.

However, in the present paper, we consider the non-parametric situation for individual measurements in
which the underlying distribution function, denoted by F , is assumed to be unimodal, but otherwise unknown.
This means that we include distributions that have an increasing–decreasing density, such as the normal,
Student t , uniform, exponential, Laplace, and logistic distribution. It has been shown by Ion14 that for densities
with more than one mode, any Shewhart control chart for individual measurements is inappropriate, or at least
suboptimal.

In our comparison we will use the standard, essentially parametric Shewhart control chart with control limits
based on the average of the moving ranges of the individual measurements. The alternative control charts we
will compare are charts based on empirical quantiles, which are related to the bootstrap method, charts based
on kernel estimators, and charts based on extreme-value theory. The availability of modern computing power in
statistical process control enables one to apply these computationally intensive techniques from mathematical
statistics.

The ascertainment of the control limits is based on the observations obtained in the so-called Phase I,
in which the data are collected from the production process and parameters are estimated (cf. Woodall and
Montgomery12). In the present article, we consider the monitoring phase which is usually called Phase II.
In most evaluations and comparisons of performance of control charts in Phase II, it is assumed, as noted
by Woodall and Montgomery12, that the in-control parameters are known, which is not the case in practice.
For this reason, the statistical performance of the classical and newly proposed control charts will be studied by
simulating the average and standard deviation of the in-control and out-of-control run length in Phase II of the
control charts with the control limits determined by in-control observations from Phase I.

The use of all control charts was demonstrated by a real-life example from a printers assembling company in
the master thesis of Vermaat (2003). In Quesenberry15 it has been shown by simulation that in order to estimate
control limits for individual measurements sufficiently accurately, one needs rather large sample sizes like 300
observations and more. Our simulation results support this for all control charts considered.

It turns out that the control chart based on the average of the moving ranges is suboptimal compared with
the newly proposed control charts, except for independently, normally distributed random variables. However,
even under normality, the alternative charts have quite good performance, especially when a sufficient amount
of data are available. The control chart based on empirical quantiles is excellent for all distributions considered.

This paper is organized as follows. In the next section, the four control charts are defined. The results are
given of an extensive Monte Carlo study based on 10 000 simulations for six different distributions and for
several Phase I sample sizes. This number of simulations turned out to be large enough for our simulation
method. Finally, conclusions are given.

DESCRIPTION OF THE CONTROL CHARTS

We will consider the usual control charts with a lower control limit (LCL) and an upper control limit (UCL).
This means that if the measurement value X is lower than LCL or higher than UCL, then the process is called
out of control.
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Classical individuals control chart based on the average of the moving ranges

If the distribution function F is assumed to be normal, then the traditional Shewhart individuals control chart
has limits defined by

UCL = µ + �−1
(

1 − α

2

)
σ

and

LCL = µ + �−1
(α

2

)
σ

where �−1 is the standard normal quantile function, and where µ is the mean and σ is the standard deviation of
the normal distribution function F . Level α is the false alarm rate. Typically, µ and σ are unknown. However, we
shall assume that they can be estimated via a Phase I sample X1, X2, . . . , Xk of independently and identically
distributed random variables. Classical estimators of µ and σ are the sample mean X̄k =∑k

i=1 Xi/k and the

sample standard deviation Sk =
√∑k

i=1 (Xi − X̄k)
2
/(k − 1). The sample standard deviation is asymptotically

efficient for independently and identically distributed normal random variables, but it has the disadvantage that
it is sensitive to trends and oscillations. Consequently, when such phenomena might occur, we have to use
estimators of the standard deviation that are less sensitive to these deviations, cf. Kamat16. The average of the
moving ranges can be scaled by 2/

√
π to obtain such an estimator, and is defined by

MRk = 1

k − 1

k∑
i=2

|Xi − Xi−1|

In Duncan17 the individuals control chart is mentioned with control limits based on the average of the moving
ranges (AMR) defined by

UCLAMR = X̄k + �−1
(

1 − α

2

) √
π

2
MRk

and

LCLAMR = X̄k + �−1
(α

2

) √
π

2
MRk

In practice, this AMR control chart is the standard chart for individual observations. The reasons for this are,
first, the constant by which the average of the moving ranges has to be multiplied in order to obtain an unbiased
estimator of σ is quite similar for probability distributions having density curves of very different shapes,
cf. Burr18. Second, the AMR control chart tends to perform reasonably well for moderate Phase I sample
sizes more or less independently of the probability distribution the observations stem from. This is thoroughly
studied in chapter five of Wheeler3. In this paper we compare the performance of the AMR control chart to three
competitors.

A more exact version of the individuals control chart is developed in Roes et al.7. However, due to limitations
in the size of this paper we will restrict our attention to the control chart described above.

Empirical quantile control chart (bootstrap)

A natural estimator of the q-quantile of the distribution function F is the empirical quantile F̂−1
k (q), which is

defined as

F̂−1
k (q) = inf{x | F̂k(x) ≥ q}, 0 < q < 1
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where F̂k is the empirical distribution function that puts mass 1/k at each Xi, 1 ≤ i ≤ k, i.e.

F̂k(x) = 1

k

k∑
i=1

I{Xi≤x}, −∞ < x < ∞

with I the indicator function, i.e. I{x≤y} = 1 if x ≤ y holds and 0 otherwise. Now, an obvious estimator of the
upper control limit is based on the empirical quantile (EQ)

UCLEQ = F̂−1
k

(
1 − α

2

)
= X(�(1−α/2)k�)

with X(1) ≤ X(2) ≤ · · · ≤ X(k) denoting the order statistics of the initial sample X1, X2, . . . , Xk and �y� the
smallest integer not smaller than y. The lower control limit estimated by the empirical quantile is defined by

LCLEQ = X(	(α/2)k+1
)

where 	y
 denotes the largest integer not larger than y. The exceedance probability for this estimation method
is not always smaller than α. To be more specific:

P(X > UCLEQ or X < LCLEQ) = 2
	(α/2)k
 + 1

k + 1
∈
(

α − α

k + 1
, α + 2 − α

k + 1

]
To overcome this problem another estimation method is proposed in Ion14, which guarantees that the exceedance
probability equals at most the significance level α. However, the resulting alternative does not have a better
performance than the EQ control chart for shifts in the mean. Therefore, we will not consider this alternative.

It can be shown that the EQ control chart is a special case of the bootstrap control chart defined by
Willemain and Runger19. The philosophy of the bootstrap approach to statistical problems is to replace the
unknown distribution function F of a random variable X by an empirical distribution function. In control charts
for individual observations one would like to use the UCLEQ = F−1(1 − α/2). Consequently, the bootstrap
approach applied to control charts for individual observations, with a Phase I sample X1, X2, . . . , Xk , yields
F̂−1

k (1 − α/2) as an estimate of the upper control limit. For the more general situation of control charts for
averages the bootstrap method is studied in Liu and Tang20. Note that in Jones and Woodall21 several control
charts based on the bootstrap are compared.

Kernel control charts

In Rosenblatt22 and Parzen23 kernel estimators of the density function f are defined as

f̂w(x) = 1

k

k∑
i=1

1

h
w

(
x − Xi

h

)
, −∞ < x < ∞

where the kernel w is non-negative such that
∫∞
−∞ w(x) dx = 1, and where the bandwidth h is positive and

small. Consequently, with W(x) = ∫ x

−∞ w(y) dy the distribution function corresponding to the density w,

F̂w(x) = 1

k

k∑
i=1

W

(
x − Xi

h

)
, −∞ < x < ∞

is a kernel estimator of the distribution function F . As in Reiss24 a smooth alternative to the conventional sample
quantile function may be defined by

F̂−1
w (q) = inf

{
x

∣∣∣∣ 1

k

k∑
i=1

W

(
x − Xi

h

)
≥ q

}
, 0 < q < 1
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The choice of the bandwidth h is more important than the choice of the kernel w. A relatively large value of
h gives too much smoothness, and a relatively small value of h gives big fluctuations. Several choices of the
kernel are possible, e.g. the Gaussian kernel and the so-called Epanechnikov kernel, i.e.

w(x) =


3

4
√

5

(
1 − x2

5

)
, if |x| <

√
5

0, if |x| ≥ √
5

In this paper we restrict attention to the Epanechnikov kernel because it gives better results than the Gaussian
kernel (cf. Ion14).

In view of Azzalini25, the optimal choice of the bandwidth h is h = Ck−1/3, where C is a constant which
depends on σ , the standard deviation of F . Azzalini did some numerical work using the Epanechnikov kernel,
and he concluded that good values for the constant C are between σ and 2σ for a large number of distributions.
Based on an extensive simulation study we found that the best choice in our situation is C = 2σ . Since σ

is unknown, we estimate it by the sample standard deviation Sk =
√∑k

i=1 (Xi − X̄k)
2
/(k − 1). Note, that

we could also use other estimators for σ like the one based on the average of the moving ranges. So for the
Epanechnikov kernel (EK) the control limits are:

UCLEK = inf

{
x

∣∣∣∣ 1

k

k∑
i=1

W

(
x − Xi

2k−1/3Sk

)
≥ 1 − α/2

}

LCLEK = sup

{
x

∣∣∣∣ 1

k

k∑
i=1

W

(
x − Xi

2k−1/3Sk

)
≤ α/2

}

Extreme-value theory control chart

Extreme-value theory yields another method to estimate the control limits of a Shewhart control chart. To the
best of our knowledge, Shewhart control charts based on this theory have not been considered before.

Define

M
(r)
k = 1

m

m∑
j=1

(log X(k−j+1) − log X(k−m))
r

and

M̄
(r)
k = 1

m

m∑
j=1

(log X(j) − log X(m+1))
r

where the integer r takes the values r = 1, 2, and m is the number of upper respectively lower order statistics
used in the estimation of the control limits.

Extreme-value theory deals with the tail behaviour of distributions. These tails can be modelled by an
extreme-value distribution, which is determined by an extreme-value index γ (cf. Dekkers et al.26). If we do not
make any assumptions on γ , we may use the moment estimator of it, defined by

γ̂k = M
(1)
k + 1 − 1

2

{
1 − (M

(1)
k )2

M
(2)
k

}−1

Furthermore, the q-quantile of the distribution function F is estimated in Dekkers et al.26 as

F̂−1
k (1 − q; γ̂k) = X(k−m) + (m/(kq))γ̂k − 1

γ̂k

(1 − (γ̂k ∧ 0))X(k−m)M
(1)
k
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with 0 < q < 1. Recall that x ∧ y and x ∨ y denote the minimum and maximum, respectively, of x and y.
Consequently, the upper control limit of the extreme-value theory control chart (EV) may be defined by

UCLEV = F̂−1
k

(
1 − α

2
; γ̂k

)
In a similar way, the lower control limit may be taken to be

LCLEV = X(m+1) + (m/(kα/2))γ̄k − 1

γ̄k

(1 − (γ̄k ∧ 0))X(m+1)M̄
(1)
k

with γ̄k defined as

γ̄k = M̄
(1)
k + 1 − 1

2

{
1 − (M̄

(1)
k )2

M̄
(2)
k

}−1

Of course, the sequence m = m(k) has to be chosen appropriately in order to obtain good performance of
UCLEV and LCLEV. In the numerical evaluation of the extreme-value theory control chart we have considered
several values of m. We found that 5 ∨ (k/500) is a reasonable choice.

SIMULATIONS

In order to study the performance of the control charts introduced in the section ‘Description of the control
charts’ we have conducted a simulation experiment, for some choices of the distribution function F and of the
Phase I sample size k. To describe our simulation procedure let us assume as above that we have a sample
X1, X2, . . . , Xk of size k from a distribution function F . This training sample is used to estimate the LCL
and UCL by L̂CL and ÛCL, respectively. Note, that the process generating this training sample is in statistical
control. We do not study robustness properties, regarding moderately out-of-control situations during Phase I.
We denote by p̂k(X1, . . . , Xk) the conditional probability given the training sample, that a new independent
random variable X from the same distribution F exceeds this upper control limit or is below the lower control
limit, i.e.

p̂k(X1, . . . , Xk) = P(X > ÛCL or X < L̂CL | X1, . . . , Xk)

Given the training sample and hence the control limits, the run length RL of the resulting control chart is a
random variable with a geometric distribution with parameter p̂k(X1, . . . , Xk) and consequently with average
run length

E(RL | X1, . . . , Xk) = 1/p̂k(X1, . . . , Xk)

Note that this is a conditional average run length and hence a random variable. Taking the expectation over the
training sample X1, . . . , Xk we get the unconditional average run length

ARL = E(RL) = E(E(RL | X1, . . . , Xk)) = E
1

p̂k(X1, . . . , Xk)

Since this expectation cannot be computed directly, we have simulated it by generating at each instance 10 000
training samples, by computing for each training sample (x1, . . . , xk) the average run length 1/p̂k(x1, . . . , xk),
and by averaging these average run lengths over the 10 000 training samples. In the same way it can be seen that
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the unconditional standard deviation of the average run length equals

SDRL =√
Var(RL)

=√
E(Var(RL | X1, . . . , Xk)) + Var(E(RL | X1, . . . , Xk))

=
√

2E

(
1

p̂k(X1, . . . , Xk)

)2

−
(

E
1

p̂k(X1, . . . , Xk)

)2

− E
1

p̂k(X1, . . . , Xk)

Moreover, we have simulated this SDRL by also computing for each training sample (1/p̂k(x1, . . . , xk))
2, by

averaging these squares over the 10 000 training samples, and by substituting the appropriate averages into the
above formula for the SDRL.

To study the performance of the control chart in an out-of-control situation we have studied shifts in the
mean. We have considered shifts δσ with δ ranging from 0.25 through 5 where σ is the standard deviation of
the studied distribution. Of course, we also have considered δ = 0 in order to study the in-control properties of
the control charts. Given the 10 000 training samples (x1, . . . , xk), we have calculated for each shift the average
run length ARL and the standard deviation of the run length SDRL as described above.

This procedure of simulating the performance of control charts differs apparently from the one used by
e.g. Quesenberry15, where once the L̂CL and ÛCL have been obtained from the training sample, one realization
of the run length is again obtained by simulation. However, this second simulation step is not necessary, as we
have seen above, since the conditional average run length can be computed exactly. Of course, there is no point
in simulation when exact computation is possible.

In our simulations the false alarm rate α is chosen to be equal to 0.0027, since this value yields the traditional
3σ limits in the classical Shewhart control chart. Consequently, if the variation of p̂k(X1, . . . , Xk) would have
been small the mean (ARL) and the standard deviation (SDRL) of the run length should both have been close
to 370 under δ = 0.

The simulations have been done for six different choices of distribution function F , namely the normal,
Student’s t with four degrees of freedom, uniform, exponential, Laplace, and logistic distribution and for sample
sizes k equal to 250, 500, 1000, 2500, 5000, and 10 000. The shift in the mean of size δσ is done for 17 different
values of δ, namely 0 (0.25) 3.5, 4, and 5.

The results of the simulations are presented for each distribution by means of two complementary figures
indicating the ARL and SDRL. Although we have simulated k at six different sample sizes, we present here the
results only for k = 1000 and under normal F also for k = 250. A complete survey of the simulation results may
be found in the master thesis of Vermaat (2003). The simulation results are valid for all values of σ , because all
methods are scale invariant.

Under normality the control chart based on the average of the moving ranges has to perform closely to optimal.
This is confirmed by Figure 1, which also shows that the other control charts perform rather badly. Apparently,
the sample size k = 250 is too small for them. The behaviour of all four control charts under the non-normal
distributions is rather bad overall. The same conclusions hold for k = 500. Note, that for these ‘small’ values of
k the EQ control chart has control limits equal to the smallest and largest observation. From k = 1000 onwards
the differences between the control charts become clearer. In Figure 2 we see that all control charts behave quite
similarly under normality.

In Figure 3 the results for a t4 distribution are given. Indeed, the AMR control chart generates a lot of false
alarms. The behaviour of the other three control charts is quite reasonable for the in-control situation. However,
few false alarms tend to create few real alarms under shifts.

In Figure 4 the results for uniform distributions are given. Only the EQ control chart has finite ARL and
SDRL. The other control charts are not even applicable when the underlying distribution is uniform.

Figure 5 presents the results for exponential distributions. We see, that the EQ control chart has a maximum
in the ARL around δ = 0.25. This maximum is due to the fact that the EQ control chart estimates an LCL within
the support of the exponential distribution. If the process shifts towards the UCL when δ increases, the LCL is
of course harder to violate and the UCL easier. Since the density of the exponential is larger near the LCL than
near the UCL, this causes the probability of an alarm to decrease and hence the ARL to increase for small δ.
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Figure 1. The ARL and the SDRL of the four control charts under normality for k = 250 and standardized shifts δ
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Figure 2. The ARL and the SDRL of the four control charts under normality for k = 1000 and standardized shifts δ
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Figure 3. The ARL and the SDRL of the four control charts under a Student t4 distribution for k = 1000 and standardized
shifts δ
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Figure 4. The ARL and the SDRL of the four control charts under uniformity for k = 1000 and standardized shifts δ
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Figure 5. The ARL and the SDRL of the four control charts under an exponential distribution for k = 1000 and standardized
shifts δ

Copyright c© 2003 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2003; 19:337–353



A COMPARISON OF SHEWHART INDIVIDUALS CONTROL CHARTS 349

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

400

A
ve

ra
ge

 R
un

 L
en

gt
h 

(A
R

L)

AMR
EQ
EK
EV

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 th

e 
R

un
 L

en
gt

h 
(S

D
R

L)

AMR
EQ
EK
EV

Figure 6. The ARL and the SDRL of the four control charts under a Laplace distribution for k = 1000 and standardized
shifts δ

Copyright c© 2003 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2003; 19:337–353



350 M. B. VERMAAT ET AL.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

400

A
ve

ra
ge

 R
un

 L
en

gt
h 

(A
R

L)

AMR
EQ
EK
EV

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 th

e 
R

un
 L

en
gt

h 
(S

D
R

L)

AMR
EQ
EK
EV

Figure 7. The ARL and the SDRL of the four control charts under a logistic distribution for k = 1000 and standardized
shifts δ
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Because the estimates of the LCL in the EK and the EV control charts typically fall outside the support of the
exponential distribution, these control charts do not show this phenomenon. The EK control chart and the EQ
control chart show almost identical performance for δ > 0.25. Note, that the behaviour of the AMR control chart
for δ = 0 is really bad.

In Figures 6 and 7 the results are given for Laplace and logistic distributions, respectively. We see again
that the AMR control chart performs very poorly for δ = 0. The other control charts perform quite similarly.
Note, that although the shape of a logistic distribution is comparable with a normal distribution, the tails are
completely different.

For all studied distributions it holds that if the sample size increases the results of the EQ, the EK, and the
EV control charts get closer to each other. The EQ control chart is the only one which behaves reasonably for a
uniform distribution. The AMR control chart generates a lot of false alarms for non-normal distributions.

CONCLUSIONS

If the distribution function F is normal, then the AMR control chart based on the average of the moving
ranges behaves quite well, but under non-normal distributions its performance is extremely bad in the
in-control situation. Hence it is reasonable to consider other control charts based on e.g. non-parametric and
extreme-value theory.

The EQ control chart has the advantage that it is easy to compute and distribution-free in the in-control
situation. Simulations show that for a broad range of distributions we get almost the same results. When we
look to the control charts based on the EK and EV theory, respectively, we may conclude that their behaviour
is quite similar to that of the EQ control chart, except for the uniform distribution. The EQ control chart turns
out to be the best of all proposed control charts. It can be improved only partially for some specific situations,
e.g. when normality holds.

It should be noted that the non-parametric and the EV control charts need more than 500 and preferably at
least 1000 observations from Phase I in order to attain reasonable performance. Such a limitation is not present
for the AMR control chart, which may work well in some situations even for a training set of size much smaller
than 250, cf. Wheeler3.

Acknowledgements

This paper is supported by funding under the European Commission’s Fifth Framework ‘Growth’ Programme
via the Thematic Network ‘Pro-ENBIS’ contract reference: G6RT-CT-2001-05059. The authors are solely
responsible for the content and it does not represent the opinion of the Community; the Community is not
responsible for any use that might be made of data therein. The second author also is supported financially by
the Netherlands Organization for Scientific Research, NWO. The authors thank the referee and the guest editor
Shirley Coleman for their useful comments and suggestions.

REFERENCES

1. Shewhart WA. Economic Control of Quality of Manufactured Product. Van Nostrand: Princeton, NJ, 1931.
2. Does RJMM, Schriever BF. Variables control chart limits and tests for special causes. Statistica Neerlandica 1992;

46:229–245.
3. Wheeler DJ. Advanced Topics in Statistical Process Control. SPC Press: Knoxville, TN, 1995.
4. Quesenberry CP. SPC Methods for Quality Improvement. Wiley: New York, 1997.
5. Does RJMM, Roes KCB, Trip A. Statistical Process Control in Industry. Kluwer Academic: Dordrecht, 1999.
6. Montgomery DC. Introduction to Statistical Quality Control. Wiley: New York, 2001.
7. Roes KCB, Does RJMM, Schurink Y. Shewhart-type control charts for individual observations. Journal of Quality

Technology 1993; 25:188–198.

Copyright c© 2003 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2003; 19:337–353



352 M. B. VERMAAT ET AL.

8. Reynolds MR Jr, Stoumbos ZG. Monitoring the process mean and variance using individual observations and variable
sampling intervals. Journal of Quality Technology 2001; 33:181–205.

9. Reynolds MR Jr, Stoumbos ZG. Individuals control schemes for monitoring the mean and variance of processes subject
to drifts. Stochastic Analysis and Applications 2001; 19:863–892.

10. Borror CM, Montgomery DC, Runger GC. Robustness of the EWMA control chart to non-normality. Journal of Quality
Technology 1999; 31:309–316.

11. Stoumbos ZG, Reynolds MR Jr. Robustness to non-normality and autocorrelation of individuals control charts. Journal
of Statistical Computation and Simulation 2000; 66:145–187.

12. Woodall WH, Montgomery DC. Research issues and ideas in statistical process control. Journal of Quality Technology
1999; 31:376–386.

13. Stoumbos ZG, Reynolds MR Jr, Ryan TP, Woodall WH. The state of statistical process control as we proceed into the
21st century. Journal of the American Statistical Association 2000; 95:992–998.

14. Ion RA. Non-parametric statistical process control. PhD Thesis, University of Amsterdam, Amsterdam, The
Netherlands, 2001.

15. Quesenberry CP. The effect of sample size on estimated limits for X̄ and X control charts. Journal of Quality
Technology 1993; 25:237–247.

16. Kamat AR. On the mean successive difference and its ratio to the root mean square. Biometrika 1953; 40:116–127.
17. Duncan AJ. Quality Control and Industrial Statistics. R. D. Irwin: Homewood, IL, 1965; 40.
18. Burr IW. The effect of non-normality on constants for X-bar and R-charts. Industrial Quality Control 1967; 23:563–

569.
19. Willemain TR, Runger GC. Designing control charts using an empirical reference distribution. Journal of Quality

Technology 1996; 28:31–38.
20. Liu RY, Tang J. Control charts for dependent and independent measurements based on bootstrap methods. Journal of

the American Statistical Association 1996; 91:1694–1700.
21. Jones LA, Woodall WH. The performance of bootstrap control charts. Journal of Quality Technology 1998; 30:362–

375.
22. Rosenblatt M. Remarks on some non-parametric estimates of a density function. Annals of Mathematical Statistics

1956; 27:832–837.
23. Parzen E. On estimation of a probability density function and mode. Annals of Mathematical Statistics 1962; 33:1065–

1076.
24. Reiss RD. Approximate Distributions of Order Statistics. Springer: New York, 1989; 253.
25. Azzalini A. A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika 1981;

68:326–328.
26. Dekkers ALM, Einmahl JHJ, De Haan L. A moment estimator for the index of an extreme-value distribution. Annals

of Statistics 1989; 17:1833–1855.

Authors’ biographies

M. B. (Thijs) Vermaat obtained a Masters Degree in Econometrics and Operations Research at the University
of Groningen in 2002 and a Master Degree in Statistics at the same University in 2003. Currently, he is a PhD
student at the University of Amsterdam and a Consultant in Industrial Statistics at the Institute for Business and
Industrial Statistics. His research interests are control charts, extreme-value theory, Bernstein approximations,
and Six Sigma.

Roxana A. Ion obtained a Masters Degree in Mathematics with specialization in Applied Mathematics at the
University of Bucharest in 1996. After graduation she started working as a PhD student in Statistics at the
University of Amsterdam. In December 2001 she obtained her PhD in Statistics at the University of Amsterdam.
The title of her thesis is ‘Non-parametric statistical process control’. Afterwards she was postdoc at the European
research center EURANDOM, where she did research and consultancy within joint projects with industry.
Currently, she is assistant professor at the Department of Technology Management of the Technical University
of Eindhoven. Her research interests are non-parametric statistics, statistical process control, extreme-value
theory, and reliability theory.

Ronald J. M. M. Does obtained his MSc degree (cum laude) in Mathematics at the University of Leiden in
1976. In 1982 he defended his PhD entitled ‘Higher order asymptotics for simple linear rank statistics’ at the

Copyright c© 2003 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2003; 19:337–353



A COMPARISON OF SHEWHART INDIVIDUALS CONTROL CHARTS 353

same university. From 1981 to 1989, he worked at the University of Maastricht, where he became Head of
the Department of Medical Informatics and Statistics. In that period his main research interests were medical
statistics and psychometrics. In 1989 he joined Philips Electronics as a Senior Consultant in Industrial Statistics.
Since 1991 he has been Professor of Industrial Statistics at the University of Amsterdam. In 1994 he founded
the Institute for Business and Industrial Statistics, which operates as an independent consultancy firm within
the University of Amsterdam. The projects at this institute involve SPC, Taguchi and Shainin methods, and
Six Sigma. His current research activities lie in the design of control charts for non-standard situations and the
improvement of statistical methods in Six Sigma.

Chris A. J. Klaassen obtained his MSc degree in Mathematics at the University of Nijmegen in 1974. In 1980
he defended his PhD entitled ‘Statistical performance of location estimators’ at the University of Leiden.
Having held positions in Statistics at the Mathematical Center in Amsterdam and the Mathematics Department
of the University of Leiden, he was appointed as full Professor in Mathematical Statistics at the University
of Amsterdam in 1990. Occasionally he acts as advisor for the Institute for Business and Industrial Statistics,
which operates as an independent consultancy firm within the University of Amsterdam. His main interest is
semiparametric statistics, but he has also published on e.g. Edgeworth expansions, finite sample inequalities in
estimation, GARCH processes, the bootstrap, and acceptance sampling.

Copyright c© 2003 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2003; 19:337–353


	INTRODUCTION
	DESCRIPTION OF THE CONTROL CHARTS
	Classical individuals control chart based on the average of the moving ranges
	Empirical quantile control chart (bootstrap)
	Kernel control charts
	Extreme-value theory control chart

	SIMULATIONS
	CONCLUSIONS
	Acknowledgements

	REFERENCES
	Authors' biographies


